|
|
Line 1: |
Line 1: |
− | ''of a morphism in a category''
| + | <!-- |
| + | k0553301.png |
| + | $#A+1 = 35 n = 0 |
| + | $#C+1 = 35 : ~/encyclopedia/old_files/data/K055/K.0505330 Kernel pair |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | A categorical generalization of the equivalence relation induced by a mapping of one set into another. A pair of morphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k0553301.png" /> in a [[Category|category]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k0553302.png" /> is called a kernel pair of the morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k0553303.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k0553304.png" />, and if for any pair of morphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k0553305.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k0553306.png" /> there is a unique morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k0553307.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k0553308.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k0553309.png" />.
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533010.png" /> be an arbitrary category of universal algebras of a given type and all homomorphisms between them that is closed with respect to finite products, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533011.png" /> be a kernel pair of a homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533012.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533013.png" />. Then the image of the homomorphism
| + | ''of a morphism in a category'' |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533014.png" /></td> </tr></table>
| + | A categorical generalization of the equivalence relation induced by a mapping of one set into another. A pair of morphisms $ \epsilon _ {1} , \epsilon _ {2} : R \rightarrow A $ |
| + | in a [[Category|category]] $ \mathfrak K $ |
| + | is called a kernel pair of the morphism $ \alpha : A \rightarrow B $ |
| + | if $ \epsilon _ {1} \alpha = \epsilon _ {2} \alpha $, |
| + | and if for any pair of morphisms $ \phi , \psi : X \rightarrow A $ |
| + | for which $ \phi \alpha = \psi \alpha $ |
| + | there is a unique morphism $ \gamma : X \rightarrow R $ |
| + | such that $ \phi = \gamma \epsilon _ {1} $ |
| + | and $ \psi = \gamma \epsilon _ {2} $. |
| | | |
− | induced by the pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533015.png" /> is a congruence on the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533016.png" /> (cf. also [[Congruence (in algebra)|Congruence (in algebra)]]). Conversely, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533017.png" /> is an arbitrary congruence on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533019.png" /> is the imbedding of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533020.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533021.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533022.png" /> are the projections of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533023.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533024.png" />, then the pair of homomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533025.png" /> is a kernel pair of the natural homomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533026.png" /> onto the quotient algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533027.png" />.
| + | Let $ \mathfrak Y $ |
| + | be an arbitrary category of universal algebras of a given type and all homomorphisms between them that is closed with respect to finite products, and let $ \epsilon _ {1} , \epsilon _ {2} : R \rightarrow A $ |
| + | be a kernel pair of a homomorphism $ f: A \rightarrow B $ |
| + | in $ \mathfrak Y $. |
| + | Then the image of the homomorphism |
| | | |
− | In an arbitrary category with finite products and kernels of pairs of morphisms (cf. [[Kernel of a morphism in a category|Kernel of a morphism in a category]]), the kernel pair of a morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533028.png" /> is constructed as follows. One chooses a product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533029.png" /> with the projections <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533030.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533031.png" />, and determines the kernel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533032.png" /> of the pair of morphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533033.png" />. Then the pair of morphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533034.png" /> is a kernel pair of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055330/k05533035.png" />.
| + | $$ |
| + | \epsilon _ {1} \times \epsilon _ {2} : R \rightarrow A \times A |
| + | $$ |
| | | |
| + | induced by the pair $ \epsilon _ {1} , \epsilon _ {2} $ |
| + | is a congruence on the algebra $ A $( |
| + | cf. also [[Congruence (in algebra)|Congruence (in algebra)]]). Conversely, if $ R \subset A \times A $ |
| + | is an arbitrary congruence on $ A $, |
| + | $ i $ |
| + | is the imbedding of $ R $ |
| + | into $ A \times A $, |
| + | and $ p _ {1} , p _ {2} $ |
| + | are the projections of $ A \times A $ |
| + | onto $ A $, |
| + | then the pair of homomorphisms $ ip _ {1} , ip _ {2} : R \rightarrow A $ |
| + | is a kernel pair of the natural homomorphism of $ A $ |
| + | onto the quotient algebra $ A/R $. |
| | | |
| + | In an arbitrary category with finite products and kernels of pairs of morphisms (cf. [[Kernel of a morphism in a category|Kernel of a morphism in a category]]), the kernel pair of a morphism $ \alpha : A \rightarrow B $ |
| + | is constructed as follows. One chooses a product $ A \times A $ |
| + | with the projections $ \pi _ {1} $ |
| + | and $ \pi _ {2} $, |
| + | and determines the kernel $ \mu $ |
| + | of the pair of morphisms $ \pi _ {1} \alpha , \pi _ {2} \alpha : A \times A \rightarrow B $. |
| + | Then the pair of morphisms $ \mu \pi _ {1} , \mu \pi _ {2} $ |
| + | is a kernel pair of $ \alpha $. |
| | | |
| ====Comments==== | | ====Comments==== |
Latest revision as of 22:14, 5 June 2020
of a morphism in a category
A categorical generalization of the equivalence relation induced by a mapping of one set into another. A pair of morphisms $ \epsilon _ {1} , \epsilon _ {2} : R \rightarrow A $
in a category $ \mathfrak K $
is called a kernel pair of the morphism $ \alpha : A \rightarrow B $
if $ \epsilon _ {1} \alpha = \epsilon _ {2} \alpha $,
and if for any pair of morphisms $ \phi , \psi : X \rightarrow A $
for which $ \phi \alpha = \psi \alpha $
there is a unique morphism $ \gamma : X \rightarrow R $
such that $ \phi = \gamma \epsilon _ {1} $
and $ \psi = \gamma \epsilon _ {2} $.
Let $ \mathfrak Y $
be an arbitrary category of universal algebras of a given type and all homomorphisms between them that is closed with respect to finite products, and let $ \epsilon _ {1} , \epsilon _ {2} : R \rightarrow A $
be a kernel pair of a homomorphism $ f: A \rightarrow B $
in $ \mathfrak Y $.
Then the image of the homomorphism
$$
\epsilon _ {1} \times \epsilon _ {2} : R \rightarrow A \times A
$$
induced by the pair $ \epsilon _ {1} , \epsilon _ {2} $
is a congruence on the algebra $ A $(
cf. also Congruence (in algebra)). Conversely, if $ R \subset A \times A $
is an arbitrary congruence on $ A $,
$ i $
is the imbedding of $ R $
into $ A \times A $,
and $ p _ {1} , p _ {2} $
are the projections of $ A \times A $
onto $ A $,
then the pair of homomorphisms $ ip _ {1} , ip _ {2} : R \rightarrow A $
is a kernel pair of the natural homomorphism of $ A $
onto the quotient algebra $ A/R $.
In an arbitrary category with finite products and kernels of pairs of morphisms (cf. Kernel of a morphism in a category), the kernel pair of a morphism $ \alpha : A \rightarrow B $
is constructed as follows. One chooses a product $ A \times A $
with the projections $ \pi _ {1} $
and $ \pi _ {2} $,
and determines the kernel $ \mu $
of the pair of morphisms $ \pi _ {1} \alpha , \pi _ {2} \alpha : A \times A \rightarrow B $.
Then the pair of morphisms $ \mu \pi _ {1} , \mu \pi _ {2} $
is a kernel pair of $ \alpha $.
A cokernel pair is defined dually.
References
[a1] | F.G. Manes, "Algebraic categories" , Springer (1976) pp. Chapt. 2, §1 |
[a2] | H. Schubert, "Kategorien" , 2 , Springer (1970) pp. Sect. 18.4 |
[a3] | S. MacLane, "Categories for the working mathematician" , Springer (1971) pp. Sects. 3.3, 3.4 |
How to Cite This Entry:
Kernel pair. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Kernel_pair&oldid=17146
This article was adapted from an original article by M.Sh. Tsalenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098.
See original article