Namespaces
Variants
Actions

Difference between revisions of "Decimal approximation of a real number"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
An approximate representation of a real number by a finite [[Decimal fraction|decimal fraction]]. Any real number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030410/d0304101.png" /> can be written in the form of an infinite decimal fraction
+
<!--
 +
d0304101.png
 +
$#A+1 = 34 n = 0
 +
$#C+1 = 34 : ~/encyclopedia/old_files/data/D030/D.0300410 Decimal approximation of a real number
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030410/d0304102.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030410/d0304103.png" /> is a non-negative integer, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030410/d0304104.png" /> is one of the digits <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030410/d0304105.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030410/d0304106.png" />. If one excludes infinite periodic decimal fractions with periods exclusively consisting of nines, one can write any real number in a unique manner as an infinite decimal fraction. Select such a notation for numbers and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030410/d0304107.png" />; then the finite decimal fraction
+
An approximate representation of a real number by a finite [[Decimal fraction|decimal fraction]]. Any real number  $  a $
 +
can be written in the form of an infinite decimal fraction
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030410/d0304108.png" /></td> </tr></table>
+
$$
 +
= \pm  \alpha _ {0} . \alpha _ {1} \dots \alpha _ {n} \dots ,
 +
$$
  
(or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030410/d0304109.png" />) is said to be the lower (upper) decimal approximation of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030410/d03041011.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030410/d03041012.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030410/d03041013.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030410/d03041014.png" />, then the lower <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030410/d03041015.png" /> and the upper <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030410/d03041016.png" /> decimal approximations of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030410/d03041017.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030410/d03041018.png" /> are defined by
+
where  $  \alpha _ {0} $
 +
is a non-negative integer,  $  \alpha _ {n} $
 +
is one of the digits  $  0 \dots 9 $
 +
and  $  n = 1 , 2 , . . . $.  
 +
If one excludes infinite periodic decimal fractions with periods exclusively consisting of nines, one can write any real number in a unique manner as an infinite decimal fraction. Select such a notation for numbers and let  $  a \geq  0 $;
 +
then the finite decimal fraction
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030410/d03041019.png" /></td> </tr></table>
+
$$
 +
\underline{a _ {n} }  = \alpha _ {0} . \alpha _ {1} \dots \alpha _ {n}  $$
 +
 
 +
(or  $  \overline{ {a _ {n} }}\; = \alpha _ {0} . \alpha _ {1} \dots \alpha _ {n} + 10  ^ {-} n $)
 +
is said to be the lower (upper) decimal approximation of order  $  n $
 +
of  $  a $.
 +
If  $  a < 0 $
 +
and  $  a  ^  \prime  = - a $,
 +
then the lower  $  {\underline{a} {} _ {n} } $
 +
and the upper  $  \overline{ {a _ {n} }}\; $
 +
decimal approximations of order  $  n $
 +
of  $  a $
 +
are defined by
 +
 
 +
$$
 +
\underline{a _ {n} }  = - \overline{ {a _ {n}  ^  \prime  }}\; ,\ \
 +
\overline{ {a _ {n} }}\; = - \underline{a _ {n}  ^  \prime  } .
 +
$$
  
 
The following relations are valid for a decimal approximation of a real number
 
The following relations are valid for a decimal approximation of a real number
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030410/d03041020.png" /></td> </tr></table>
+
$$
 +
\underline{a _ {n} }  \leq  \underline{a _ {n+} 1 }  \leq  a  \leq  {a _ {n+} 1 } bar  \leq  \overline{ {a _ {n} }}\; ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030410/d03041021.png" /></td> </tr></table>
+
$$
 +
\overline{ {a _ {n} }}\; - \underline{a _ {n} }  = 10  ^ {-} n .
 +
$$
  
 
It follows that
 
It follows that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030410/d03041022.png" /></td> </tr></table>
+
$$
 +
\lim\limits _ {n \rightarrow \infty } ( \underline{a _ {n} } \pm  \underline{b _ {n} } )  = \
 +
a \pm  b,\ \
 +
\lim\limits _ {n \rightarrow \infty }  \underline{a _ {n} } \underline{b _ {n} }  = ab ,
 +
$$
  
and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030410/d03041023.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030410/d03041024.png" />, and upper approximations may be taken instead of lower.
+
and if $  b \neq 0 $,  
 +
then $  \lim\limits _ {n \rightarrow \infty }  {\underline{a} {} _ {n} } / {\underline{b} {} _ {n} } = a / b $,  
 +
and upper approximations may be taken instead of lower.
  
Decimal approximations are used in practice for approximate calculations. The approximate values of the sums <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030410/d03041025.png" />, differences <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030410/d03041026.png" />, products <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030410/d03041027.png" />, and quotients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030410/d03041028.png" /> are given, respectively, by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030410/d03041029.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030410/d03041030.png" />,
+
Decimal approximations are used in practice for approximate calculations. The approximate values of the sums $  a + b $,  
 +
differences $  a - b $,  
 +
products $  ab $,  
 +
and quotients $  a/b $
 +
are given, respectively, by $  {\underline{a} {} _ {n} } + {\underline{b} {} _ {n} } $,  
 +
$  {\underline{a} {} _ {n} } - {\underline{b} {} _ {n} } $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030410/d03041031.png" /></td> </tr></table>
+
$$
 +
\underline{( \underline{a _ {n} } \underline{b _ {n} } ) _ {n} } \ \
 +
\textrm{ and } \  \underline{\left (
 +
\frac{\underline{a _ {n} } }{\underline{b _ {n} } }
 +
\right ) _ {n} } .
 +
$$
  
As a result of these operations on finite decimal fractions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030410/d03041032.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030410/d03041033.png" />, which have at most <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030410/d03041034.png" /> significant figures to the right of the decimal point, one again obtains decimal fractions with at most <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030410/d03041035.png" /> significant figures to the right of the decimal point. The sought-for result may be obtained to any desired degree of accuracy using these fractions.
+
As a result of these operations on finite decimal fractions $  {\underline{a} {} _ {n} } $
 +
and $  {\underline{b} {} _ {n} } $,  
 +
which have at most $  n $
 +
significant figures to the right of the decimal point, one again obtains decimal fractions with at most $  n $
 +
significant figures to the right of the decimal point. The sought-for result may be obtained to any desired degree of accuracy using these fractions.

Latest revision as of 17:32, 5 June 2020


An approximate representation of a real number by a finite decimal fraction. Any real number $ a $ can be written in the form of an infinite decimal fraction

$$ a = \pm \alpha _ {0} . \alpha _ {1} \dots \alpha _ {n} \dots , $$

where $ \alpha _ {0} $ is a non-negative integer, $ \alpha _ {n} $ is one of the digits $ 0 \dots 9 $ and $ n = 1 , 2 , . . . $. If one excludes infinite periodic decimal fractions with periods exclusively consisting of nines, one can write any real number in a unique manner as an infinite decimal fraction. Select such a notation for numbers and let $ a \geq 0 $; then the finite decimal fraction

$$ \underline{a _ {n} } = \alpha _ {0} . \alpha _ {1} \dots \alpha _ {n} $$

(or $ \overline{ {a _ {n} }}\; = \alpha _ {0} . \alpha _ {1} \dots \alpha _ {n} + 10 ^ {-} n $) is said to be the lower (upper) decimal approximation of order $ n $ of $ a $. If $ a < 0 $ and $ a ^ \prime = - a $, then the lower $ {\underline{a} {} _ {n} } $ and the upper $ \overline{ {a _ {n} }}\; $ decimal approximations of order $ n $ of $ a $ are defined by

$$ \underline{a _ {n} } = - \overline{ {a _ {n} ^ \prime }}\; ,\ \ \overline{ {a _ {n} }}\; = - \underline{a _ {n} ^ \prime } . $$

The following relations are valid for a decimal approximation of a real number

$$ \underline{a _ {n} } \leq \underline{a _ {n+} 1 } \leq a \leq {a _ {n+} 1 } bar \leq \overline{ {a _ {n} }}\; , $$

$$ \overline{ {a _ {n} }}\; - \underline{a _ {n} } = 10 ^ {-} n . $$

It follows that

$$ \lim\limits _ {n \rightarrow \infty } ( \underline{a _ {n} } \pm \underline{b _ {n} } ) = \ a \pm b,\ \ \lim\limits _ {n \rightarrow \infty } \underline{a _ {n} } \underline{b _ {n} } = ab , $$

and if $ b \neq 0 $, then $ \lim\limits _ {n \rightarrow \infty } {\underline{a} {} _ {n} } / {\underline{b} {} _ {n} } = a / b $, and upper approximations may be taken instead of lower.

Decimal approximations are used in practice for approximate calculations. The approximate values of the sums $ a + b $, differences $ a - b $, products $ ab $, and quotients $ a/b $ are given, respectively, by $ {\underline{a} {} _ {n} } + {\underline{b} {} _ {n} } $, $ {\underline{a} {} _ {n} } - {\underline{b} {} _ {n} } $,

$$ \underline{( \underline{a _ {n} } \underline{b _ {n} } ) _ {n} } \ \ \textrm{ and } \ \underline{\left ( \frac{\underline{a _ {n} } }{\underline{b _ {n} } } \right ) _ {n} } . $$

As a result of these operations on finite decimal fractions $ {\underline{a} {} _ {n} } $ and $ {\underline{b} {} _ {n} } $, which have at most $ n $ significant figures to the right of the decimal point, one again obtains decimal fractions with at most $ n $ significant figures to the right of the decimal point. The sought-for result may be obtained to any desired degree of accuracy using these fractions.

How to Cite This Entry:
Decimal approximation of a real number. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Decimal_approximation_of_a_real_number&oldid=17107
This article was adapted from an original article by L.D. Kudryavtsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article