|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
− | Fermat's last theorem is the claim that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f1200501.png" /> has no solutions in non-zero integers for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f1200502.png" /> (see also [[Fermat last theorem|Fermat last theorem]]). However, over a function field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f1200503.png" /> (cf. also [[Algebraic function|Algebraic function]]), with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f1200504.png" /> of non-zero characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f1200505.png" />, the appropriate generalization is not just to take <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f1200506.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f1200507.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f1200508.png" /> as polynomials over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f1200509.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005010.png" />. In any event, in characteristic zero, or for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005011.png" /> prime to the characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005012.png" />, it is fairly easy to see, by descent on the degrees of a putative solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005013.png" />, that there is not even a non-trivial solution over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005014.png" />, with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005015.png" /> the algebraic closure of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005016.png" />.
| + | <!--This article has been texified automatically. Since there was no Nroff source code for this article, |
| + | the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist |
| + | was used. |
| + | If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category. |
| | | |
− | In 1982, D. Goss [[#References|[a1]]] formulated a suitable analogue for the case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005017.png" />. Goss notes that, traditionally, Fermat's equation is viewed as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005018.png" />, where the connection with cyclotomic fields, and thence the classical exponential function, is displayed: the zeros of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005019.png" /> are precisely the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005020.png" /> roots of unity. But in characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005021.png" /> the analogue of the exponential function comes by way of the [[Drinfel'd module|Drinfel'd module]]; more specifically, the Carlitz module. A familiar and elementary manifestation of such things is the Hilbert theorem 90, whereby a cyclic extension of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005022.png" /> in characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005023.png" /> is not given by a zero of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005024.png" />, but of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005025.png" />.
| + | Out of 64 formulas, 64 were replaced by TEX code.--> |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005026.png" /> be the field of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005027.png" /> elements. The equation that in this context appears to raise issues analogous to those provoked by the classical Fermat equation is
| + | {{TEX|semi-auto}}{{TEX|done}} |
| + | Fermat's last theorem is the claim that $x ^ { n } - y ^ { n } = z ^ { n }$ has no solutions in non-zero integers for $n > 2$ (see also [[Fermat last theorem|Fermat last theorem]]). However, over a function field $\mathbf{F} ( T )$ (cf. also [[Algebraic function|Algebraic function]]), with $\mathbf{F}$ of non-zero characteristic $p$, the appropriate generalization is not just to take $x$, $y$ and $z$ as polynomials over $\mathbf{F}$ in $T$. In any event, in characteristic zero, or for $n$ prime to the characteristic $p$, it is fairly easy to see, by descent on the degrees of a putative solution $( x ( T ) , y ( T ) , z ( T ) )$, that there is not even a non-trivial solution over $\mathbf{F} [ T ]$, with $\mathbf{F}$ the algebraic closure of $\mathbf{F}$. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005028.png" /></td> </tr></table>
| + | In 1982, D. Goss [[#References|[a1]]] formulated a suitable analogue for the case $\operatorname { gcd } ( n , p ) \neq 1$. Goss notes that, traditionally, Fermat's equation is viewed as $y ^ { n } ( ( x / y ) ^ { n } - 1 ) = z ^ { n }$, where the connection with cyclotomic fields, and thence the classical exponential function, is displayed: the zeros of $w ^ { n } - 1$ are precisely the $n ^ { \text { th } }$ roots of unity. But in characteristic $p > 0$ the analogue of the exponential function comes by way of the [[Drinfel'd module|Drinfel'd module]]; more specifically, the Carlitz module. A familiar and elementary manifestation of such things is the Hilbert theorem 90, whereby a cyclic extension of degree $p$ in characteristic $p$ is not given by a zero of $X ^ { p } - a$, but of $X ^ { p } - X - a$. |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005029.png" /> is the Carlitz module determined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005030.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005031.png" /> denotes the Frobenius mapping relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005032.png" />, i.e. the mapping that gives <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005033.png" /> powers. To say that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005034.png" /> is the Carlitz module is to require also that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005035.png" />. Goss [[#References|[a1]]] deals, à la Kummer, with the case of this equation when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005036.png" /> is a regular prime of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005037.png" />.
| + | Let $\mathbf{F} = \mathbf{F} _ { q }$ be the field of $q = p ^ { m }$ elements. The equation that in this context appears to raise issues analogous to those provoked by the classical Fermat equation is |
| | | |
− | The equation has two important parameters, the element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005038.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005039.png" /> and the order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005040.png" />. As usual, a solution with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005041.png" /> is called non-trivial. When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005042.png" />, Goss shows that in analogy with the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005043.png" /> there are an infinity of solutions. Suppose <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005044.png" /> is monic. L. Denis [[#References|[a2]]] proves that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005045.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005046.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005047.png" />, there is no non-trivial solution. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005048.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005049.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005050.png" />, there is a unique solution proportional in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005051.png" /> to the triplet <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005052.png" /> in the case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005053.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005054.png" /> is a square in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005055.png" />; and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005056.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005057.png" />, then there is a solution only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005058.png" /> is of the shape <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005059.png" />, and it is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005060.png" />. Denis deals completely with the remaining cases <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005061.png" />. Because <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005062.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005063.png" />-linear, one can now easily produce the results for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005064.png" /> not monic.
| + | \begin{equation*} y ^ { q ^ { r } } \phi_f ( x / y ) - z ^ { p } = 0, \end{equation*} |
| + | |
| + | where $\phi$ is the Carlitz module determined by $\phi _ { T } = T F ^ { 0 } + F$ and $F$ denotes the Frobenius mapping relative to $\mathbf{F} _ { q }$, i.e. the mapping that gives $q ^ { \text{th} }$ powers. To say that $\phi$ is the Carlitz module is to require also that $\phi _ { f } \phi _ { g } = \phi _ { f g }$. Goss [[#References|[a1]]] deals, à la Kummer, with the case of this equation when $f$ is a regular prime of $\mathbf{F} _ { q } [ T ]$. |
| + | |
| + | The equation has two important parameters, the element $f$ of $\mathbf{F} _ { q } [ T ]$ and the order $q = p ^ { m }$. As usual, a solution with $x y z \neq 0$ is called non-trivial. When $\operatorname { deg } f = 1$, Goss shows that in analogy with the equation $x ^ { 2 } - y ^ { 2 } = z ^ { 2 }$ there are an infinity of solutions. Suppose $f$ is monic. L. Denis [[#References|[a2]]] proves that if $q \geq 3$, $p \neq 2$ and $\operatorname { deg } f \geq 2$, there is no non-trivial solution. If $q \geq 4$, $p = 2$ and $\operatorname { deg } f \geq 2$, there is a unique solution proportional in $\mathbf{F} _ { q }$ to the triplet $( 1,1 , T + T ^ { q / 2 } )$ in the case $f = T ^ { 2 } + T + \beta$, where $\beta$ is a square in $\mathbf{F} _ { q }$; and if $q = 2$, $\operatorname { deg } f \geq 4$, then there is a solution only if $f$ is of the shape $( T ^ { 2 } + T ) g ( T ) + 1$, and it is $( 1,1,1 )$. Denis deals completely with the remaining cases $q = 2$. Because $\phi$ is $\mathbf{F} _ { q }$-linear, one can now easily produce the results for $f$ not monic. |
| | | |
| In settling the general case, Denis [[#References|[a2]]] speaks of the Fermat–Goss theorem. It seems appropriate here to write of the Fermat–Goss–Denis theorem. | | In settling the general case, Denis [[#References|[a2]]] speaks of the Fermat–Goss theorem. It seems appropriate here to write of the Fermat–Goss–Denis theorem. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> D. Goss, "On a Fermat equation arising in the arithmetic theory of function fields" ''Math. Ann.'' , '''261''' (1982) pp. 269–286</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> L. Denis, "Le théorème de Fermat–Goss" ''Trans. Amer. Math. Soc.'' , '''343''' (1994) pp. 713–726</TD></TR></table> | + | <table><tr><td valign="top">[a1]</td> <td valign="top"> D. Goss, "On a Fermat equation arising in the arithmetic theory of function fields" ''Math. Ann.'' , '''261''' (1982) pp. 269–286</td></tr><tr><td valign="top">[a2]</td> <td valign="top"> L. Denis, "Le théorème de Fermat–Goss" ''Trans. Amer. Math. Soc.'' , '''343''' (1994) pp. 713–726</td></tr></table> |
Fermat's last theorem is the claim that $x ^ { n } - y ^ { n } = z ^ { n }$ has no solutions in non-zero integers for $n > 2$ (see also Fermat last theorem). However, over a function field $\mathbf{F} ( T )$ (cf. also Algebraic function), with $\mathbf{F}$ of non-zero characteristic $p$, the appropriate generalization is not just to take $x$, $y$ and $z$ as polynomials over $\mathbf{F}$ in $T$. In any event, in characteristic zero, or for $n$ prime to the characteristic $p$, it is fairly easy to see, by descent on the degrees of a putative solution $( x ( T ) , y ( T ) , z ( T ) )$, that there is not even a non-trivial solution over $\mathbf{F} [ T ]$, with $\mathbf{F}$ the algebraic closure of $\mathbf{F}$.
In 1982, D. Goss [a1] formulated a suitable analogue for the case $\operatorname { gcd } ( n , p ) \neq 1$. Goss notes that, traditionally, Fermat's equation is viewed as $y ^ { n } ( ( x / y ) ^ { n } - 1 ) = z ^ { n }$, where the connection with cyclotomic fields, and thence the classical exponential function, is displayed: the zeros of $w ^ { n } - 1$ are precisely the $n ^ { \text { th } }$ roots of unity. But in characteristic $p > 0$ the analogue of the exponential function comes by way of the Drinfel'd module; more specifically, the Carlitz module. A familiar and elementary manifestation of such things is the Hilbert theorem 90, whereby a cyclic extension of degree $p$ in characteristic $p$ is not given by a zero of $X ^ { p } - a$, but of $X ^ { p } - X - a$.
Let $\mathbf{F} = \mathbf{F} _ { q }$ be the field of $q = p ^ { m }$ elements. The equation that in this context appears to raise issues analogous to those provoked by the classical Fermat equation is
\begin{equation*} y ^ { q ^ { r } } \phi_f ( x / y ) - z ^ { p } = 0, \end{equation*}
where $\phi$ is the Carlitz module determined by $\phi _ { T } = T F ^ { 0 } + F$ and $F$ denotes the Frobenius mapping relative to $\mathbf{F} _ { q }$, i.e. the mapping that gives $q ^ { \text{th} }$ powers. To say that $\phi$ is the Carlitz module is to require also that $\phi _ { f } \phi _ { g } = \phi _ { f g }$. Goss [a1] deals, à la Kummer, with the case of this equation when $f$ is a regular prime of $\mathbf{F} _ { q } [ T ]$.
The equation has two important parameters, the element $f$ of $\mathbf{F} _ { q } [ T ]$ and the order $q = p ^ { m }$. As usual, a solution with $x y z \neq 0$ is called non-trivial. When $\operatorname { deg } f = 1$, Goss shows that in analogy with the equation $x ^ { 2 } - y ^ { 2 } = z ^ { 2 }$ there are an infinity of solutions. Suppose $f$ is monic. L. Denis [a2] proves that if $q \geq 3$, $p \neq 2$ and $\operatorname { deg } f \geq 2$, there is no non-trivial solution. If $q \geq 4$, $p = 2$ and $\operatorname { deg } f \geq 2$, there is a unique solution proportional in $\mathbf{F} _ { q }$ to the triplet $( 1,1 , T + T ^ { q / 2 } )$ in the case $f = T ^ { 2 } + T + \beta$, where $\beta$ is a square in $\mathbf{F} _ { q }$; and if $q = 2$, $\operatorname { deg } f \geq 4$, then there is a solution only if $f$ is of the shape $( T ^ { 2 } + T ) g ( T ) + 1$, and it is $( 1,1,1 )$. Denis deals completely with the remaining cases $q = 2$. Because $\phi$ is $\mathbf{F} _ { q }$-linear, one can now easily produce the results for $f$ not monic.
In settling the general case, Denis [a2] speaks of the Fermat–Goss theorem. It seems appropriate here to write of the Fermat–Goss–Denis theorem.
References
[a1] | D. Goss, "On a Fermat equation arising in the arithmetic theory of function fields" Math. Ann. , 261 (1982) pp. 269–286 |
[a2] | L. Denis, "Le théorème de Fermat–Goss" Trans. Amer. Math. Soc. , 343 (1994) pp. 713–726 |