Namespaces
Variants
Actions

Difference between revisions of "Privalov operators"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
p0748501.png
 +
$#A+1 = 39 n = 0
 +
$#C+1 = 39 : ~/encyclopedia/old_files/data/P074/P.0704850 Privalov operators,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''Privalov parameters''
 
''Privalov parameters''
  
Operators that allow one to express the condition of harmonicity of a function without using partial derivatives (cf. [[Harmonic function|Harmonic function]]). Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074850/p0748501.png" /> be a locally integrable function in a bounded domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074850/p0748502.png" /> of a Euclidean space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074850/p0748503.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074850/p0748504.png" />; let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074850/p0748505.png" /> denote the volume of the ball <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074850/p0748506.png" /> of radius <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074850/p0748507.png" /> with centre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074850/p0748508.png" />, lying in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074850/p0748509.png" />; and let
+
Operators that allow one to express the condition of harmonicity of a function without using partial derivatives (cf. [[Harmonic function|Harmonic function]]). Let $  u $
 +
be a locally integrable function in a bounded domain $  D $
 +
of a Euclidean space $  \mathbf R  ^ {n} $,  
 +
$  n \geq  2 $;  
 +
let $  \omega ( h) $
 +
denote the volume of the ball $  B ( x;  h) $
 +
of radius $  h $
 +
with centre $  x \in D $,  
 +
lying in $  D $;  
 +
and let
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074850/p07485010.png" /></td> </tr></table>
+
$$
 +
\Delta _ {h} u ( x)  = \
 +
{
 +
\frac{1}{\omega ( h) }
 +
}
 +
\int\limits _ {B ( x; h) }
 +
u ( y)  dy - u ( x).
 +
$$
  
The upper and lower Privalov operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074850/p07485011.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074850/p07485012.png" /> are defined, respectively, by the formulas
+
The upper and lower Privalov operators $  \overline \Delta \; {}  ^ {*} u ( x) $
 +
and $  \underline \Delta  ^ {*} u ( x) $
 +
are defined, respectively, by the formulas
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074850/p07485013.png" /></td> </tr></table>
+
$$
 +
\overline \Delta \; {}  ^ {*} u ( x)  = \
 +
\overline{\lim\limits}\; _ {h \rightarrow 0 } 2( n+
 +
\frac{2)}{h  ^ {2} }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074850/p07485014.png" /></td> </tr></table>
+
\Delta _ {h} u( x) ,
 +
$$
  
If the upper and lower Privalov operators coincide, then the Privalov operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074850/p07485015.png" /> is defined by
+
$$
 +
\underline \Delta  ^ {*} u ( x)  = \lim\limits _ {\overline{ {h \rightarrow 0 }}\; } 2( n+
 +
\frac{2)}{h  ^ {2} }
 +
\Delta _ {h} u( x) .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074850/p07485016.png" /></td> </tr></table>
+
If the upper and lower Privalov operators coincide, then the Privalov operator  $  \Delta  ^ {*} u ( x) $
 +
is defined by
  
If the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074850/p07485017.png" /> has continuous partial derivatives up to and including the second order at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074850/p07485018.png" />, then the Privalov operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074850/p07485019.png" /> exists at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074850/p07485020.png" /> and is equal to the value of the [[Laplace operator|Laplace operator]]: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074850/p07485021.png" />. Privalov's theorem says: If a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074850/p07485022.png" />, continuous in a domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074850/p07485023.png" />, satisfies everywhere in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074850/p07485024.png" /> the conditions
+
$$
 +
\Delta  ^ {*} u ( x)  = \
 +
\overline \Delta \; {}  ^ {*} u ( x)  = \
 +
\underline \Delta  ^ {*} u ( x)  = \
 +
\lim\limits _ {h \rightarrow 0 }
 +
2( n+
 +
\frac{2)}{h  ^ {2} }
 +
\Delta _ {h} u( x) .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074850/p07485025.png" /></td> </tr></table>
+
If the function  $  u $
 +
has continuous partial derivatives up to and including the second order at  $  x \in D $,
 +
then the Privalov operator  $  \Delta  ^ {*} u( x) $
 +
exists at  $  x $
 +
and is equal to the value of the [[Laplace operator|Laplace operator]]: $  \Delta  ^ {*} u ( x) = \Delta u ( x) $.
 +
Privalov's theorem says: If a function  $  u $,
 +
continuous in a domain  $  D $,
 +
satisfies everywhere in  $  D $
 +
the conditions
  
then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074850/p07485026.png" /> is harmonic in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074850/p07485027.png" />. This implies that a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074850/p07485028.png" />, continuous in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074850/p07485029.png" />, is harmonic if and only if at every point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074850/p07485030.png" /> one has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074850/p07485031.png" />, from some sufficiently small <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074850/p07485032.png" /> onwards, or, in other words, if and only if
+
$$
 +
\underline \Delta  ^ {*} u ( x)  \leq  \
 +
0 \leq  \overline \Delta \; {}  ^ {*} u ( x),
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074850/p07485033.png" /></td> </tr></table>
+
then  $  u $
 +
is harmonic in  $  D $.
 +
This implies that a function  $  u $,
 +
continuous in  $  D $,
 +
is harmonic if and only if at every point  $  x \in D $
 +
one has  $  \Delta _ {h} u ( x) = 0 $,
 +
from some sufficiently small  $  h $
 +
onwards, or, in other words, if and only if
 +
 
 +
$$
 +
u ( x)  = \
 +
{
 +
\frac{1}{\omega ( h) }
 +
}
 +
\int\limits _ {B ( x; h) }
 +
u ( y)  dy.
 +
$$
  
 
The average value over the volume of a sphere can be replaced by that over the surface area.
 
The average value over the volume of a sphere can be replaced by that over the surface area.
Line 27: Line 101:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  I.I. Privalov,  ''Mat. Sb.'' , '''32'''  (1925)  pp. 464–471</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  I.I. Privalov,  "Subharmonic functions" , Moscow-Leningrad  (1937)  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  M. Brélot,  "Eléments de la théorie classique du potentiel" , Sorbonne Univ. Centre Doc. Univ. , Paris  (1969)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  I.I. Privalov,  ''Mat. Sb.'' , '''32'''  (1925)  pp. 464–471</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  I.I. Privalov,  "Subharmonic functions" , Moscow-Leningrad  (1937)  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  M. Brélot,  "Eléments de la théorie classique du potentiel" , Sorbonne Univ. Centre Doc. Univ. , Paris  (1969)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
More generally, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074850/p07485034.png" /> is lower semi-continuous, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074850/p07485035.png" /> is hyperharmonic if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074850/p07485036.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074850/p07485037.png" /> (the theorem of Blaschke–Privalov).
+
More generally, if $  u > - \infty $
 +
is lower semi-continuous, then $  u $
 +
is hyperharmonic if and only if $  \underline \Delta  ^ {*} u \leq  0 $
 +
on $  \{ u < \infty \} $(
 +
the theorem of Blaschke–Privalov).
  
Similar results hold if the average value over the surface area is used for the operators and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074850/p07485038.png" /> is replaced by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074850/p07485039.png" />.
+
Similar results hold if the average value over the surface area is used for the operators and $  2( n+ 2) $
 +
is replaced by $  2n $.

Latest revision as of 08:07, 6 June 2020


Privalov parameters

Operators that allow one to express the condition of harmonicity of a function without using partial derivatives (cf. Harmonic function). Let $ u $ be a locally integrable function in a bounded domain $ D $ of a Euclidean space $ \mathbf R ^ {n} $, $ n \geq 2 $; let $ \omega ( h) $ denote the volume of the ball $ B ( x; h) $ of radius $ h $ with centre $ x \in D $, lying in $ D $; and let

$$ \Delta _ {h} u ( x) = \ { \frac{1}{\omega ( h) } } \int\limits _ {B ( x; h) } u ( y) dy - u ( x). $$

The upper and lower Privalov operators $ \overline \Delta \; {} ^ {*} u ( x) $ and $ \underline \Delta ^ {*} u ( x) $ are defined, respectively, by the formulas

$$ \overline \Delta \; {} ^ {*} u ( x) = \ \overline{\lim\limits}\; _ {h \rightarrow 0 } 2( n+ \frac{2)}{h ^ {2} } \Delta _ {h} u( x) , $$

$$ \underline \Delta ^ {*} u ( x) = \lim\limits _ {\overline{ {h \rightarrow 0 }}\; } 2( n+ \frac{2)}{h ^ {2} } \Delta _ {h} u( x) . $$

If the upper and lower Privalov operators coincide, then the Privalov operator $ \Delta ^ {*} u ( x) $ is defined by

$$ \Delta ^ {*} u ( x) = \ \overline \Delta \; {} ^ {*} u ( x) = \ \underline \Delta ^ {*} u ( x) = \ \lim\limits _ {h \rightarrow 0 } 2( n+ \frac{2)}{h ^ {2} } \Delta _ {h} u( x) . $$

If the function $ u $ has continuous partial derivatives up to and including the second order at $ x \in D $, then the Privalov operator $ \Delta ^ {*} u( x) $ exists at $ x $ and is equal to the value of the Laplace operator: $ \Delta ^ {*} u ( x) = \Delta u ( x) $. Privalov's theorem says: If a function $ u $, continuous in a domain $ D $, satisfies everywhere in $ D $ the conditions

$$ \underline \Delta ^ {*} u ( x) \leq \ 0 \leq \overline \Delta \; {} ^ {*} u ( x), $$

then $ u $ is harmonic in $ D $. This implies that a function $ u $, continuous in $ D $, is harmonic if and only if at every point $ x \in D $ one has $ \Delta _ {h} u ( x) = 0 $, from some sufficiently small $ h $ onwards, or, in other words, if and only if

$$ u ( x) = \ { \frac{1}{\omega ( h) } } \int\limits _ {B ( x; h) } u ( y) dy. $$

The average value over the volume of a sphere can be replaced by that over the surface area.

References

[1] I.I. Privalov, Mat. Sb. , 32 (1925) pp. 464–471
[2] I.I. Privalov, "Subharmonic functions" , Moscow-Leningrad (1937) (In Russian)
[3] M. Brélot, "Eléments de la théorie classique du potentiel" , Sorbonne Univ. Centre Doc. Univ. , Paris (1969)

Comments

More generally, if $ u > - \infty $ is lower semi-continuous, then $ u $ is hyperharmonic if and only if $ \underline \Delta ^ {*} u \leq 0 $ on $ \{ u < \infty \} $( the theorem of Blaschke–Privalov).

Similar results hold if the average value over the surface area is used for the operators and $ 2( n+ 2) $ is replaced by $ 2n $.

How to Cite This Entry:
Privalov operators. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Privalov_operators&oldid=16543
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article