Difference between revisions of "Quasi-symmetric function of a complex variable"
(Importing text file) |
(details) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!--This article has been texified automatically. Since there was no Nroff source code for this article, | |
+ | the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist | ||
+ | was used. | ||
+ | If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category. | ||
− | + | Out of 107 formulas, 107 were replaced by TEX code.--> | |
− | + | {{TEX|semi-auto}}{{TEX|done}} | |
+ | An [[Automorphism|automorphism]] of the real axis \mathbf{R} (i.e. a sense-preserving [[Homeomorphism|homeomorphism]] h of \mathbf{R} onto itself) is said to be M-quasi-symmetric on \mathbf{R} (notation: $h \in M-\operatorname {QS} ( \mathbf R )$) if | ||
− | + | \begin{equation*} M ^ { - 1 } \leq \frac { h ( x + t ) - h ( x ) } { h ( x ) - h ( x - t ) } \leq M \end{equation*} | |
− | + | holds for all X \in \mathbf R and all $t > 0$. An automorphism h of \mathbf{R} is quasi-symmetric (notation: h \in \operatorname {QS} ( \mathbf{R} )) if h \in M-\operatorname {QS} ( \mathbf R ) for some M \geq 1. A. Beurling and L.V. Ahlfors established a close relation between h \in \operatorname {QS} ( \mathbf{R} ) and quasi-conformal mappings of the upper half-plane H onto itself (cf. also [[Quasi-conformal mapping|Quasi-conformal mapping]]), cf. statements A), B) below. The term "quasi-symmetric" was proposed in [[#References|[a2]]]. | |
− | + | A) Any K-quasi-conformal automorphism f of H normalized by the condition f ( \infty ) = \infty admits a homeomorphic extension to the closure of H and generates in this way h \in M-\operatorname {QS} ( \mathbf R ), where $M = \lambda ( K ) : = [ \mu ^ { - 1 } ( \pi K / 2 ) ] ^ { - 2 } - 1$, cf. [[#References|[a1]]], [[#References|[a6]]]. | |
− | + | Here $\mu ( r ), 0 < r < 1$, is the module of the ring domain $\mathbf{D} \backslash [ 0 , r ], \mathbf{D} = \{ z \in \mathbf{C} : | z | < 1 \}$ (cf. also [[Modulus of an annulus|Modulus of an annulus]]). The bound for M is sharp. | |
− | + | B) Conversely, for any M \geq 1 there exists a constant K ( M ) such that an arbitrary h \in M-\operatorname {QS} ( \mathbf R ) has a quasi-conformal extension f to H with f ( \infty ) = \infty whose maximal dilatation K [ f ] satisfies K [ f ] \leq K ( M ), cf. [[#References|[a1]]], [[#References|[a6]]]. | |
− | + | The best value of K ( M ) known today (2000) is $\operatorname{min} \{ M ^ { 3 / 2 } , 2 M - 1 \}$, cf. [[#References|[a5]]]. | |
− | + | Quasi-symmetric functions on \mathbf{R} satisfy the following: If h \in \operatorname {QS} ( \mathbf{R} ), so does $h ^ { - 1 }$; if h _ { 1 } , h _ { 2 } \in \operatorname {QS} ( \mathbf{R} ), so does h _ { 1 } \circ h _ { 2 }. However, there exist singular functions on \mathbf{R} that are also quasi-symmetric [[#References|[a1]]]. | |
− | + | One may also distinguish the class M-\operatorname{QS} ( \mathbf{T} ) of M-quasi-symmetric automorphisms h of the unit circle $\mathbf{T} = \partial \mathbf D $. To this end, let | \alpha | denote the length of an open arc \alpha \subset \mathbf{T}. Then h \in M-\operatorname{QS} ( \mathbf{T} ) if there is an M \geq 1 such that for any pair $\alpha , \beta of open disjoint subarcs of \bf T$ with a common end-point | |
− | + | \begin{equation*} | \alpha | = | \beta | \Rightarrow \frac { | h ( \alpha ) | } { | h ( \beta ) | } \leq M. \end{equation*} | |
− | + | The class \operatorname{QS} ( \mathbf{T} ) = \cup _ { M \geq 1 } M-\operatorname{QS} ( \mathbf{T} ) has some nice properties: no boundary point of \mathbf D is distinguished, Hölder continuity is global on \bf T and any $h \in \operatorname { QS} ( \mathbf{T} )$ may be represented by an absolutely convergent [[Fourier series|Fourier series]], cf. [[#References|[a3]]], [[#References|[a4]]]. | |
− | + | Quasi-symmetric automorphisms of \mathbf{R} or \bf T are intimately connected with quasi-circles, i.e. image curves of a circle under a quasi-conformal automorphism of \widehat{\mathbf{C}}. Let \mathcal{J} be a [[Jordan curve|Jordan curve]] in the finite plane \mathbf{C} and let f (or F) be a [[Conformal mapping|conformal mapping]] of the inside (or outside) domain of \mathcal{J} onto \mathbf D (respectively, $\mathbf{D} ^ { * } = \widehat { \mathbf{C} } \backslash \overline { \mathbf{D} }). Then h = F \circ f ^ { - 1 } is an automorphism of \bf T and h \in \operatorname { QS} ( \mathbf{T} ) is equivalent to \mathcal{J}$ being a quasi-circle [[#References|[a6]]], [[#References|[a7]]]. | |
− | + | A sense-preserving homeomorphism $h : \mathbf{T} \rightarrow \mathbf{C} is said to be an M$-quasi-symmetric function on \bf T (notation: h \in M-\operatorname{QS} ( \mathbf{T} , \mathbf{C} )) if for any triple z _ { 1 } , z _ { 2 } , z _ { 3 } \in \mathbf{T}, z _ { 2 } \neq z _ { 3 }, | |
+ | |||
+ | \begin{equation*} | z _ { 1 } - z _ { 2 } | = | z _ { 2 } - z _ { 3 } | \Rightarrow \frac { | h ( z _ { 1 } ) - h ( z _ { 2 } ) | } { | h ( z _ { 2 } ) - h ( z _ { 3 } ) | } \leq M. \end{equation*} | ||
+ | |||
+ | Obviously, M-\operatorname{QS} ( {\bf T} ) \subset M-\operatorname{QS} ( \mathbf{T} , \mathbf{C} ). One defines h to be a quasi-symmetric function on \bf T if $h \in \operatorname{QS} (\mathbf{ T} , \mathbf{C} ) : = \cup _ { M \geq 1 } M$-\operatorname{QS} ( \mathbf{T} , \mathbf{C} ). For any h \in \operatorname{QS} ( \mathbf{T} , \mathbf{C} ) the Jordan curve h ( \mathbf{T} ) is a quasi-circle, cf. [[#References|[a8]]]. The following characterization of \operatorname{QS} ( \mathbf{T} , \mathbf{C} ) was given by P. Tukia and J. Väisälä in [[#References|[a9]]]: For a , b , x \in \mathbf{T} with b \neq x, put $\rho = | a - x | / | b - x |$. Then h \in \operatorname{QS} ( \mathbf{T} , \mathbf{C} ) if and only if there is an automorphism \eta of $[ 0 , + \infty )$ such that $| h ( a ) - h ( x ) | / | h ( b ) - h ( x ) | \leq \eta ( \rho )$ for all admissible triples a , b , x. | ||
====References==== | ====References==== | ||
− | <table>< | + | <table> |
+ | <tr><td valign="top">[a1]</td> <td valign="top"> A. Beurling, L.V. Ahlfors, "The boundary correspondence under quasiconformal mappings" ''Acta Math.'' , '''96''' (1956) pp. 125–142</td></tr><tr><td valign="top">[a2]</td> <td valign="top"> J.A. Kelingos, "Contributions to the theory of quasiconformal mappings" , Diss. Univ. Michigan (1963)</td></tr><tr><td valign="top">[a3]</td> <td valign="top"> J.G. Krzyż, "Quasicircles and harmonic measure" ''Ann. Acad. Sci. Fenn. Ser. A.I. Math.'' , '''12''' (1987) pp. 19–24</td></tr><tr><td valign="top">[a4]</td> <td valign="top"> J.G. Krzyż, M. Nowak, "Harmonic automorphisms of the unit disk" ''J. Comput. Appl. Math.'' , '''105''' (1999) pp. 337–346</td></tr><tr><td valign="top">[a5]</td> <td valign="top"> M. Lehtinen, "Remarks on the maximal dilatations of the Beurling–Ahlfors extension" ''Ann. Acad. Sci. Fenn. Ser. A.I. Math.'' , '''9''' (1984) pp. 133–139</td></tr><tr><td valign="top">[a6]</td> <td valign="top"> O. Lehto, K.I. Virtanen, "Quasiconformal mappings in the plane" , Springer (1973)</td></tr><tr><td valign="top">[a7]</td> <td valign="top"> D. Partyka, "A sewing theorem for complementary Jordan domains" ''Ann. Univ. Mariae Curie–Skłodowska Sect. A'' , '''41''' (1987) pp. 99–103</td></tr><tr><td valign="top">[a8]</td> <td valign="top"> Ch. Pommerenke, "Boundary behaviour of conformal maps" , Springer (1992)</td></tr><tr><td valign="top">[a9]</td> <td valign="top"> P. Tukia, J. Väisälä, "Quasisymmetric embeddings of metric spaces" ''Ann. Acad. Sci. Fenn. Ser. A.I. Math.'' , '''5''' (1980) pp. 97–114</td></tr> | ||
+ | </table> |
Latest revision as of 07:25, 25 January 2024
An automorphism h of the real axis \mathbf{R} (i.e. a sense-preserving homeomorphism h of \mathbf{R} onto itself) is said to be M-quasi-symmetric on \mathbf{R} (notation: h \in M-\operatorname {QS} ( \mathbf R )) if
\begin{equation*} M ^ { - 1 } \leq \frac { h ( x + t ) - h ( x ) } { h ( x ) - h ( x - t ) } \leq M \end{equation*}
holds for all X \in \mathbf R and all t > 0. An automorphism h of \mathbf{R} is quasi-symmetric (notation: h \in \operatorname {QS} ( \mathbf{R} )) if h \in M-\operatorname {QS} ( \mathbf R ) for some M \geq 1. A. Beurling and L.V. Ahlfors established a close relation between h \in \operatorname {QS} ( \mathbf{R} ) and quasi-conformal mappings of the upper half-plane H onto itself (cf. also Quasi-conformal mapping), cf. statements A), B) below. The term "quasi-symmetric" was proposed in [a2].
A) Any K-quasi-conformal automorphism f of H normalized by the condition f ( \infty ) = \infty admits a homeomorphic extension to the closure of H and generates in this way h \in M-\operatorname {QS} ( \mathbf R ), where M = \lambda ( K ) : = [ \mu ^ { - 1 } ( \pi K / 2 ) ] ^ { - 2 } - 1, cf. [a1], [a6].
Here \mu ( r ), 0 < r < 1, is the module of the ring domain \mathbf{D} \backslash [ 0 , r ], \mathbf{D} = \{ z \in \mathbf{C} : | z | < 1 \} (cf. also Modulus of an annulus). The bound for M is sharp.
B) Conversely, for any M \geq 1 there exists a constant K ( M ) such that an arbitrary h \in M-\operatorname {QS} ( \mathbf R ) has a quasi-conformal extension f to H with f ( \infty ) = \infty whose maximal dilatation K [ f ] satisfies K [ f ] \leq K ( M ), cf. [a1], [a6].
The best value of K ( M ) known today (2000) is \operatorname{min} \{ M ^ { 3 / 2 } , 2 M - 1 \}, cf. [a5].
Quasi-symmetric functions on \mathbf{R} satisfy the following: If h \in \operatorname {QS} ( \mathbf{R} ), so does h ^ { - 1 }; if h _ { 1 } , h _ { 2 } \in \operatorname {QS} ( \mathbf{R} ), so does h _ { 1 } \circ h _ { 2 }. However, there exist singular functions on \mathbf{R} that are also quasi-symmetric [a1].
One may also distinguish the class M-\operatorname{QS} ( \mathbf{T} ) of M-quasi-symmetric automorphisms h of the unit circle \mathbf{T} = \partial \mathbf D . To this end, let | \alpha | denote the length of an open arc \alpha \subset \mathbf{T}. Then h \in M-\operatorname{QS} ( \mathbf{T} ) if there is an M \geq 1 such that for any pair \alpha , \beta of open disjoint subarcs of \bf T with a common end-point
\begin{equation*} | \alpha | = | \beta | \Rightarrow \frac { | h ( \alpha ) | } { | h ( \beta ) | } \leq M. \end{equation*}
The class \operatorname{QS} ( \mathbf{T} ) = \cup _ { M \geq 1 } M-\operatorname{QS} ( \mathbf{T} ) has some nice properties: no boundary point of \mathbf D is distinguished, Hölder continuity is global on \bf T and any h \in \operatorname { QS} ( \mathbf{T} ) may be represented by an absolutely convergent Fourier series, cf. [a3], [a4].
Quasi-symmetric automorphisms of \mathbf{R} or \bf T are intimately connected with quasi-circles, i.e. image curves of a circle under a quasi-conformal automorphism of \widehat{\mathbf{C}}. Let \mathcal{J} be a Jordan curve in the finite plane \mathbf{C} and let f (or F) be a conformal mapping of the inside (or outside) domain of \mathcal{J} onto \mathbf D (respectively, \mathbf{D} ^ { * } = \widehat { \mathbf{C} } \backslash \overline { \mathbf{D} }). Then h = F \circ f ^ { - 1 } is an automorphism of \bf T and h \in \operatorname { QS} ( \mathbf{T} ) is equivalent to \mathcal{J} being a quasi-circle [a6], [a7].
A sense-preserving homeomorphism h : \mathbf{T} \rightarrow \mathbf{C} is said to be an M-quasi-symmetric function on \bf T (notation: h \in M-\operatorname{QS} ( \mathbf{T} , \mathbf{C} )) if for any triple z _ { 1 } , z _ { 2 } , z _ { 3 } \in \mathbf{T}, z _ { 2 } \neq z _ { 3 },
\begin{equation*} | z _ { 1 } - z _ { 2 } | = | z _ { 2 } - z _ { 3 } | \Rightarrow \frac { | h ( z _ { 1 } ) - h ( z _ { 2 } ) | } { | h ( z _ { 2 } ) - h ( z _ { 3 } ) | } \leq M. \end{equation*}
Obviously, M-\operatorname{QS} ( {\bf T} ) \subset M-\operatorname{QS} ( \mathbf{T} , \mathbf{C} ). One defines h to be a quasi-symmetric function on \bf T if h \in \operatorname{QS} (\mathbf{ T} , \mathbf{C} ) : = \cup _ { M \geq 1 } M-\operatorname{QS} ( \mathbf{T} , \mathbf{C} ). For any h \in \operatorname{QS} ( \mathbf{T} , \mathbf{C} ) the Jordan curve h ( \mathbf{T} ) is a quasi-circle, cf. [a8]. The following characterization of \operatorname{QS} ( \mathbf{T} , \mathbf{C} ) was given by P. Tukia and J. Väisälä in [a9]: For a , b , x \in \mathbf{T} with b \neq x, put \rho = | a - x | / | b - x |. Then h \in \operatorname{QS} ( \mathbf{T} , \mathbf{C} ) if and only if there is an automorphism \eta of [ 0 , + \infty ) such that | h ( a ) - h ( x ) | / | h ( b ) - h ( x ) | \leq \eta ( \rho ) for all admissible triples a , b , x.
References
[a1] | A. Beurling, L.V. Ahlfors, "The boundary correspondence under quasiconformal mappings" Acta Math. , 96 (1956) pp. 125–142 |
[a2] | J.A. Kelingos, "Contributions to the theory of quasiconformal mappings" , Diss. Univ. Michigan (1963) |
[a3] | J.G. Krzyż, "Quasicircles and harmonic measure" Ann. Acad. Sci. Fenn. Ser. A.I. Math. , 12 (1987) pp. 19–24 |
[a4] | J.G. Krzyż, M. Nowak, "Harmonic automorphisms of the unit disk" J. Comput. Appl. Math. , 105 (1999) pp. 337–346 |
[a5] | M. Lehtinen, "Remarks on the maximal dilatations of the Beurling–Ahlfors extension" Ann. Acad. Sci. Fenn. Ser. A.I. Math. , 9 (1984) pp. 133–139 |
[a6] | O. Lehto, K.I. Virtanen, "Quasiconformal mappings in the plane" , Springer (1973) |
[a7] | D. Partyka, "A sewing theorem for complementary Jordan domains" Ann. Univ. Mariae Curie–Skłodowska Sect. A , 41 (1987) pp. 99–103 |
[a8] | Ch. Pommerenke, "Boundary behaviour of conformal maps" , Springer (1992) |
[a9] | P. Tukia, J. Väisälä, "Quasisymmetric embeddings of metric spaces" Ann. Acad. Sci. Fenn. Ser. A.I. Math. , 5 (1980) pp. 97–114 |
Quasi-symmetric function of a complex variable. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Quasi-symmetric_function_of_a_complex_variable&oldid=16525