Namespaces
Variants
Actions

Difference between revisions of "Gauss variational problem"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(details)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
A variational problem, first studied by C.F. Gauss (1840) [[#References|[1]]], which may be formulated in modern terms as follows. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043570/g0435701.png" /> be a positive measure in a Euclidean space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043570/g0435702.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043570/g0435703.png" />, of finite energy (cf. [[Energy of measures|Energy of measures]]), and let
+
{{TEX|done}}
 +
A variational problem, first studied by [[Gauss, Carl Friedrich|C.F. Gauss]] (1840) [[#References|[1]]], which may be formulated in modern terms as follows. Let $\mu$ be a positive measure in a Euclidean space $\mathbf R^n$, $n\geq3$, of finite energy (cf. [[Energy of measures|Energy of measures]]), and let
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043570/g0435704.png" /></td> </tr></table>
+
$$U^\mu(x)=\int\frac{1}{|x-y|^{n-2}}d\mu(y)$$
  
define the [[Newton potential|Newton potential]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043570/g0435705.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043570/g0435706.png" />. Out of all measures <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043570/g0435707.png" /> with compact support <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043570/g0435708.png" /> it is required to find a measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043570/g0435709.png" /> giving the minimum of the integral
+
define the [[Newton potential]] $U^\mu$ of $\mu$. Out of all measures $\lambda$ with compact support $K\subset\mathbf R^n$ it is required to find a measure $\mu_0$ giving the minimum of the integral
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043570/g04357010.png" /></td> </tr></table>
+
$$\int(U^\lambda-2U^\mu)d\lambda,$$
  
which is the scalar product (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043570/g04357011.png" />) in the pre-Hilbert space of measures of finite energy.
+
which is the scalar product ($\lambda-2\mu,\lambda$) in the pre-Hilbert space of measures of finite energy.
  
The importance of the Gauss variational problem consists in the fact that the equilibrium measure (cf. [[Robin problem|Robin problem]]) may be obtained as a solution of the Gauss variational problem for a certain choice of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043570/g04357012.png" />; for example, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043570/g04357013.png" /> may be taken to be a homogeneous mass distribution over a sphere with centre in the coordinate origin that includes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043570/g04357014.png" />.
+
The importance of the Gauss variational problem consists in the fact that the equilibrium measure (cf. [[Robin problem|Robin problem]]) may be obtained as a solution of the Gauss variational problem for a certain choice of $\mu$; for example, $\mu$ may be taken to be a homogeneous mass distribution over a sphere with centre in the coordinate origin that includes $K$.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  C.F. Gauss,  "Allgemeine Lehrsätze in Beziehung auf die im verkehrten Verhältnisse des Quadrats der Entfernung wirkenden Anziehung- und Abstössungs-Kräfte" , ''Werke'' , '''5''' , K. Gesellschaft Wissenschaft. Göttingen  (1877)  pp. 195–242</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  N.S. [N.S. Landkov] Landkof,  "Foundations of modern potential theory" , Springer  (1972)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  M. Brélot,  "Eléments de la théorie classique du potentiel" , Sorbonne Univ. Centre Doc. Univ. , Paris  (1959)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top">  C.F. Gauss,  "Allgemeine Lehrsätze in Beziehung auf die im verkehrten Verhältnisse des Quadrats der Entfernung wirkenden Anziehung- und Abstössungs-Kräfte" , ''Werke'' , '''5''' , K. Gesellschaft Wissenschaft. Göttingen  (1877)  pp. 195–242</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  N.S. [N.S. Landkov] Landkof,  "Foundations of modern potential theory" , Springer  (1972)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  M. Brélot,  "Eléments de la théorie classique du potentiel" , Sorbonne Univ. Centre Doc. Univ. , Paris  (1959)</TD></TR>
 +
</table>
  
  
  
 
====Comments====
 
====Comments====
The measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043570/g04357015.png" /> is the projection of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043570/g04357016.png" /> on the convex cone of all positive measures <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043570/g04357017.png" />, of finite energy, and with support contained in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043570/g04357018.png" />. See also [[#References|[a1]]], Chapt. I.XIII for a treatment of this subject.
+
The measure $\mu_0$ is the projection of $\mu$ on the convex cone of all positive measures $\lambda$, of finite energy, and with support contained in $K$. See also [[#References|[a1]]], Chapt. I.XIII for a treatment of this subject.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J.L. Doob,  "Classical potential theory and its probabilistic counterpart" , Springer  (1984)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J.L. Doob,  "Classical potential theory and its probabilistic counterpart" , Springer  (1984)</TD></TR></table>

Latest revision as of 12:40, 20 April 2024

A variational problem, first studied by C.F. Gauss (1840) [1], which may be formulated in modern terms as follows. Let $\mu$ be a positive measure in a Euclidean space $\mathbf R^n$, $n\geq3$, of finite energy (cf. Energy of measures), and let

$$U^\mu(x)=\int\frac{1}{|x-y|^{n-2}}d\mu(y)$$

define the Newton potential $U^\mu$ of $\mu$. Out of all measures $\lambda$ with compact support $K\subset\mathbf R^n$ it is required to find a measure $\mu_0$ giving the minimum of the integral

$$\int(U^\lambda-2U^\mu)d\lambda,$$

which is the scalar product ($\lambda-2\mu,\lambda$) in the pre-Hilbert space of measures of finite energy.

The importance of the Gauss variational problem consists in the fact that the equilibrium measure (cf. Robin problem) may be obtained as a solution of the Gauss variational problem for a certain choice of $\mu$; for example, $\mu$ may be taken to be a homogeneous mass distribution over a sphere with centre in the coordinate origin that includes $K$.

References

[1] C.F. Gauss, "Allgemeine Lehrsätze in Beziehung auf die im verkehrten Verhältnisse des Quadrats der Entfernung wirkenden Anziehung- und Abstössungs-Kräfte" , Werke , 5 , K. Gesellschaft Wissenschaft. Göttingen (1877) pp. 195–242
[2] N.S. [N.S. Landkov] Landkof, "Foundations of modern potential theory" , Springer (1972) (Translated from Russian)
[3] M. Brélot, "Eléments de la théorie classique du potentiel" , Sorbonne Univ. Centre Doc. Univ. , Paris (1959)


Comments

The measure $\mu_0$ is the projection of $\mu$ on the convex cone of all positive measures $\lambda$, of finite energy, and with support contained in $K$. See also [a1], Chapt. I.XIII for a treatment of this subject.

References

[a1] J.L. Doob, "Classical potential theory and its probabilistic counterpart" , Springer (1984)
How to Cite This Entry:
Gauss variational problem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Gauss_variational_problem&oldid=16406
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article