Difference between revisions of "Daubechies wavelets"
(Importing text file) |
(latex details) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!--This article has been texified automatically. Since there was no Nroff source code for this article, | |
+ | the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist | ||
+ | was used. | ||
+ | If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category. | ||
− | + | Out of 30 formulas, 30 were replaced by TEX code.--> | |
− | + | {{TEX|semi-auto}}{{TEX|done}} | |
+ | A wavelet is a function $\psi \in L ^ { 2 } ( \mathbf{R} )$ that yields a basis in $L ^ { 2 } ( \mathbf{R} )$ by means of translations and dyadic dilations of itself, i.e., | ||
− | + | \begin{equation*} f ( x ) = \sum _ { j = - \infty } ^ { \infty } \sum _ { k = - \infty } ^ { \infty } a _ { j , k } \psi ( 2 ^ { j } x - k ), \end{equation*} | |
− | + | for all $f \in L ^ { 2 } ( \mathbf{R} )$ (cf. also [[Wavelet analysis|Wavelet analysis]]). Such a decomposition is called the discrete wavelet transform. | |
+ | |||
+ | In 1988, the Belgian mathematician I. Daubechies constructed [[#References|[a2]]] a class of wavelet functions $\psi _ { N }$, $N \in \mathbf{N} \backslash \{ 0 \}$, that satisfy some special properties. First of all, the collection $\psi _ { N } ( x - k )$, $k \in \mathbf{Z}$, is an [[Orthonormal system|orthonormal system]] for fixed $N \in \mathbf{N} \backslash \{ 0 \}$. Furthermore, each wavelet $\psi _ { N }$ is compactly supported (cf. also [[Function of compact support|Function of compact support]]). Moreover, $\operatorname { supp } ( \psi _ { N } ) = [ 0,2 N - 1 ]$. The index number $N$ is also related to the number of vanishing moments, i.e., | ||
+ | |||
+ | \begin{equation*} \int _ { - \infty } ^ { \infty } x ^ { k } \psi _ { N } ( x ) d x = 0,0 \leq k \leq N. \end{equation*} | ||
A last important property of the Daubechies wavelets is that their regularity increases linearly with their support width. In fact, | A last important property of the Daubechies wavelets is that their regularity increases linearly with their support width. In fact, | ||
− | + | \begin{equation*} \exists \lambda > 0 \forall N \in \mathbf{N} , N > 2 : \psi _ { N } \in C ^ { \lambda N }. \end{equation*} | |
− | For large | + | For large $N$ one has $\lambda \approx 0.2$. |
− | The Daubechies wavelets are neither symmetric nor anti-symmetric around any axis, except for | + | The Daubechies wavelets are neither symmetric nor anti-symmetric around any axis, except for $\Psi_1$, which is in fact the Haar wavelet [[#References|[a3]]]. Satisfying symmetry conditions cannot go together with all other properties of the Daubechies wavelets. |
The Daubechies wavelets can also be used for the continuous wavelet transform, i.e. | The Daubechies wavelets can also be used for the continuous wavelet transform, i.e. | ||
− | + | \begin{equation*} W _ { \psi } [ f ] ( a , b ) = \frac { 1 } { \sqrt { a } } \int _ { - \infty } ^ { \infty } f ( x ) \psi \overline{\left( \frac { x - b } { a } \right)} d x, \end{equation*} | |
− | for | + | for $f \in L ^ { 2 } ( \mathbf{R} )$, $a \in \mathbf{R} ^ { + }$ and $b \in \mathbf{R}$. The parameters $a$ and $b$ denote scale and translation/position of the transform. A stable reconstruction formula exists for the continuous wavelet transform if and only if the following admissibility condition holds: |
− | < | + | \begin{equation*} 0 < C _ { \psi } = 2 \pi \int _ { 0 } ^ { \infty } \frac { \left| \widehat { \psi } ( a \omega ) \right| ^ { 2 } } { a } d a < \infty , \end{equation*} |
− | where | + | where $\widehat { \psi }$ denotes the [[Fourier transform|Fourier transform]] of $\psi$. The reconstruction formula reads: |
− | + | \begin{equation*} f ( x ) = \frac { 1 } { C _ { \psi } } \int _ { 0 } ^ { \infty } \int _ { - \infty } ^ { \infty } W _ { \psi } [ f ] ( a , b ) \psi ( \frac { x - b } { a } ) d b \frac { d a } { a \sqrt { a } }. \end{equation*} | |
− | This result holds weakly in | + | This result holds weakly in $L ^ { 2 } ( \mathbf{R} )$. For $f \in L ^ { 1 } ( \mathbf{R} ) \cap L ^ { 2 } ( \mathbf{R} )$ and $\hat { f } \in L ^ { 1 } ( \mathbf{R} )$, this results also holds pointwise. |
All Daubechies wavelets satisfy the admissibility condition and thus guarantee a stable reconstruction. | All Daubechies wavelets satisfy the admissibility condition and thus guarantee a stable reconstruction. | ||
====References==== | ====References==== | ||
− | <table>< | + | <table> |
+ | <tr><td valign="top">[a1]</td> <td valign="top"> I. Daubechies, "Ten lectures on wavelets" , SIAM (1992)</td></tr><tr><td valign="top">[a2]</td> <td valign="top"> I. Daubechies, "Orthonormal bases of compactly supported wavelets" ''Commun. Pure Appl. Math.'' , '''41''' (1988) pp. 909–996</td></tr><tr><td valign="top">[a3]</td> <td valign="top"> A. Haar, "Zur theorie der orthogonalen Funktionensysteme" ''Math. Ann.'' , '''69''' (1910) pp. 331–371</td></tr> | ||
+ | </table> |
Latest revision as of 20:18, 25 January 2024
A wavelet is a function $\psi \in L ^ { 2 } ( \mathbf{R} )$ that yields a basis in $L ^ { 2 } ( \mathbf{R} )$ by means of translations and dyadic dilations of itself, i.e.,
\begin{equation*} f ( x ) = \sum _ { j = - \infty } ^ { \infty } \sum _ { k = - \infty } ^ { \infty } a _ { j , k } \psi ( 2 ^ { j } x - k ), \end{equation*}
for all $f \in L ^ { 2 } ( \mathbf{R} )$ (cf. also Wavelet analysis). Such a decomposition is called the discrete wavelet transform.
In 1988, the Belgian mathematician I. Daubechies constructed [a2] a class of wavelet functions $\psi _ { N }$, $N \in \mathbf{N} \backslash \{ 0 \}$, that satisfy some special properties. First of all, the collection $\psi _ { N } ( x - k )$, $k \in \mathbf{Z}$, is an orthonormal system for fixed $N \in \mathbf{N} \backslash \{ 0 \}$. Furthermore, each wavelet $\psi _ { N }$ is compactly supported (cf. also Function of compact support). Moreover, $\operatorname { supp } ( \psi _ { N } ) = [ 0,2 N - 1 ]$. The index number $N$ is also related to the number of vanishing moments, i.e.,
\begin{equation*} \int _ { - \infty } ^ { \infty } x ^ { k } \psi _ { N } ( x ) d x = 0,0 \leq k \leq N. \end{equation*}
A last important property of the Daubechies wavelets is that their regularity increases linearly with their support width. In fact,
\begin{equation*} \exists \lambda > 0 \forall N \in \mathbf{N} , N > 2 : \psi _ { N } \in C ^ { \lambda N }. \end{equation*}
For large $N$ one has $\lambda \approx 0.2$.
The Daubechies wavelets are neither symmetric nor anti-symmetric around any axis, except for $\Psi_1$, which is in fact the Haar wavelet [a3]. Satisfying symmetry conditions cannot go together with all other properties of the Daubechies wavelets.
The Daubechies wavelets can also be used for the continuous wavelet transform, i.e.
\begin{equation*} W _ { \psi } [ f ] ( a , b ) = \frac { 1 } { \sqrt { a } } \int _ { - \infty } ^ { \infty } f ( x ) \psi \overline{\left( \frac { x - b } { a } \right)} d x, \end{equation*}
for $f \in L ^ { 2 } ( \mathbf{R} )$, $a \in \mathbf{R} ^ { + }$ and $b \in \mathbf{R}$. The parameters $a$ and $b$ denote scale and translation/position of the transform. A stable reconstruction formula exists for the continuous wavelet transform if and only if the following admissibility condition holds:
\begin{equation*} 0 < C _ { \psi } = 2 \pi \int _ { 0 } ^ { \infty } \frac { \left| \widehat { \psi } ( a \omega ) \right| ^ { 2 } } { a } d a < \infty , \end{equation*}
where $\widehat { \psi }$ denotes the Fourier transform of $\psi$. The reconstruction formula reads:
\begin{equation*} f ( x ) = \frac { 1 } { C _ { \psi } } \int _ { 0 } ^ { \infty } \int _ { - \infty } ^ { \infty } W _ { \psi } [ f ] ( a , b ) \psi ( \frac { x - b } { a } ) d b \frac { d a } { a \sqrt { a } }. \end{equation*}
This result holds weakly in $L ^ { 2 } ( \mathbf{R} )$. For $f \in L ^ { 1 } ( \mathbf{R} ) \cap L ^ { 2 } ( \mathbf{R} )$ and $\hat { f } \in L ^ { 1 } ( \mathbf{R} )$, this results also holds pointwise.
All Daubechies wavelets satisfy the admissibility condition and thus guarantee a stable reconstruction.
References
[a1] | I. Daubechies, "Ten lectures on wavelets" , SIAM (1992) |
[a2] | I. Daubechies, "Orthonormal bases of compactly supported wavelets" Commun. Pure Appl. Math. , 41 (1988) pp. 909–996 |
[a3] | A. Haar, "Zur theorie der orthogonalen Funktionensysteme" Math. Ann. , 69 (1910) pp. 331–371 |
Daubechies wavelets. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Daubechies_wavelets&oldid=16293