Namespaces
Variants
Actions

Difference between revisions of "Maximal torus"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (subscript fix)
 
(2 intermediate revisions by one other user not shown)
Line 1: Line 1:
A maximal torus of a linear algebraic group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m0630101.png" /> is an algebraic subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m0630102.png" /> which is an [[Algebraic torus|algebraic torus]] and which is not contained in any larger subgroup of that type. Now let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m0630103.png" /> be connected. The union of all maximal tori of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m0630104.png" /> coincides with the set of all semi-simple elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m0630105.png" /> (see [[Jordan decomposition|Jordan decomposition]]) and their intersection coincides with the set of all semi-simple elements of the centre of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m0630106.png" />. Every maximal torus is contained in some [[Borel subgroup|Borel subgroup]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m0630107.png" />. The centralizer of a maximal torus is a [[Cartan subgroup|Cartan subgroup]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m0630108.png" />; it is always connected. Any two maximal tori of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m0630109.png" /> are conjugate in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301010.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301011.png" /> is defined over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301012.png" />, then there is a maximal torus in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301013.png" /> also defined over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301014.png" />; its centralizer is also defined over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301015.png" />.
+
{{TEX|done}}
 +
A maximal torus of a linear algebraic group $  G $
 +
is an algebraic subgroup of $  G $
 +
which is an [[Algebraic torus|algebraic torus]] and which is not contained in any larger subgroup of that type. Now let $  G $
 +
be connected. The union of all maximal tori of $  G $
 +
coincides with the set of all semi-simple elements of $  G $ (see [[Jordan decomposition|Jordan decomposition]]) and their intersection coincides with the set of all semi-simple elements of the centre of $  G $ .  
 +
Every maximal torus is contained in some [[Borel subgroup|Borel subgroup]] of $  G $ .  
 +
The centralizer of a maximal torus is a [[Cartan subgroup|Cartan subgroup]] of $  G $ ;  
 +
it is always connected. Any two maximal tori of $  G $
 +
are conjugate in $  G $ .  
 +
If $  G $
 +
is defined over a field $  k $ ,  
 +
then there is a maximal torus in $  G $
 +
also defined over $  k $ ;  
 +
its centralizer is also defined over $  k $ .
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301016.png" /> be a [[Reductive group|reductive group]] defined over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301017.png" />. Consider the maximal subgroups among all algebraic subgroups of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301018.png" /> which are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301019.png" />-split algebraic tori. The maximal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301020.png" />-split tori thus obtained are conjugate over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301021.png" />. The common dimension of these tori is called the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301023.png" />-rank of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301024.png" /> and is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301025.png" />. A maximal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301026.png" />-split torus need not, in general, be a maximal torus, that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301027.png" /> is in general less than the rank of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301028.png" /> (which is equal to the dimension of a maximal torus in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301029.png" />). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301030.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301031.png" /> is called an anisotropic group over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301032.png" />, and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301033.png" /> coincides with the rank of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301034.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301035.png" /> is called a split group over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301036.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301037.png" /> is algebraically closed, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301038.png" /> is always split over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301039.png" />. In general, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301040.png" /> is split over the separable closure of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301041.png" />.
 
  
Examples. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301042.png" /> be a field and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301043.png" /> be an algebraic closure. The group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301044.png" /> of non-singular matrices of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301045.png" /> with coefficients in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301046.png" /> (see [[Classical group|Classical group]]; [[General linear group|General linear group]]) is defined and split over the prime subfield of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301047.png" />. The subgroup of all diagonal matrices is a maximal torus in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301048.png" />.
+
Let $  G $
 +
be a [[Reductive group|reductive group]] defined over a field  $  k $ .
 +
Consider the maximal subgroups among all algebraic subgroups of $  G $
 +
which are  $  k $-split algebraic tori. The maximal  $  k $-split tori thus obtained are conjugate over  $  k $ .  
 +
The common dimension of these tori is called the  $  k $-rank of  $  G $
 +
and is denoted by  $  \mathop{\rm rk}\nolimits _{k} \  G $ .  
 +
A maximal  $  k $-split torus need not, in general, be a maximal torus, that is,  $  \mathop{\rm rk}\nolimits _{k} \  G $
 +
is in general less than the rank of $  G $ (which is equal to the dimension of a maximal torus in $  G $ ).
 +
If  $  \mathop{\rm rk}\nolimits _{k} \  G = 0 $ ,
 +
then  $  G $
 +
is called an anisotropic group over  $  k $ ,
 +
and if  $  \mathop{\rm rk}\nolimits _{k} \  G $
 +
coincides with the rank of  $  G $ ,
 +
then  $  G $
 +
is called a split group over  $  k $ .  
 +
If  $  k $
 +
is algebraically closed, then  $  G $
 +
is always split over  $  k $ .  
 +
In general,  $  G $
 +
is split over the separable closure of  $  k $ .
  
Let the characteristic of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301049.png" /> be different from 2. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301050.png" /> be an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301051.png" />-dimensional vector space over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301052.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301053.png" /> a non-degenerate quadratic form on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301054.png" /> defined over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301055.png" /> (the latter means that in some basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301056.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301057.png" />, the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301058.png" /> is a polynomial in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301059.png" /> with coefficients in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301060.png" />). Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301061.png" /> be the group of all non-singular linear transformations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301062.png" /> with determinant 1 and preserving <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301063.png" />. It is defined over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301064.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301065.png" /> be the linear hull over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301066.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301067.png" />; it is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301068.png" />-form of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301069.png" />. In <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301070.png" /> there always exists a basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301071.png" /> such that
 
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301072.png" /></td> </tr></table>
+
Examples. Let  $  k $
 +
be a field and let  $  \overline{k}  $
 +
be an algebraic closure. The group  $  G = \mathop{\rm GL}\nolimits _{n} ( \overline{k}  ) $
 +
of non-singular matrices of order  $  n $
 +
with coefficients in  $  \overline{k}  $ (see [[Classical group|Classical group]]; [[General linear group|General linear group]]) is defined and split over the prime subfield of  $  k $. The subgroup of all diagonal matrices is a maximal torus in  $  G $ .
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301073.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301074.png" /> is even and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301075.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301076.png" /> is odd. The subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301077.png" /> consisting of the elements whose matrix in this basis takes the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301078.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301079.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301080.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301081.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301082.png" />, is a maximal torus in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301083.png" /> (thus the rank of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301084.png" /> is equal to the integer part of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301085.png" />). In general, this basis does not belong to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301086.png" />. However, there always is a basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301087.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301088.png" /> in which the quadratic form can be written as
 
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301089.png" /></td> </tr></table>
+
Let the characteristic of  $  k $
 +
be different from 2. Let  $  V $
 +
be an  $  n $-dimensional vector space over  $  \overline{k}  $
 +
and  $  F $
 +
a non-degenerate quadratic form on  $  V $ defined over  $  k $ (the latter means that in some basis  $  e _{1} \dots e _{n} $
 +
of  $  V $ ,
 +
the form  $  F ( x _{1} e _{1} + \dots + x _{n} e _{n} ) $
 +
is a polynomial in  $  x _{1} \dots x _{n} $
 +
with coefficients in  $  k $ ).
 +
Let  $  G $
 +
be the group of all non-singular linear transformations of  $  V $
 +
with determinant 1 and preserving  $  F $ .
 +
It is defined over  $  k $ .
 +
Let  $  V _{k} $
 +
be the linear hull over  $  k $
 +
of  $  e _{1} \dots e _{n} $ ;
 +
it is a  $  k $-form of  $  V $ .
 +
In  $  V $ there always exists a basis  $  f _{1} \dots f _{n} $
 +
such that $$
 +
F ( x _{1} f _{1} + \dots + x _{n} f _{n} )  = 
 +
x _{1} x _{n} + x _{2} x _{n-1} + \dots + x _{p} x _{n-p+1} ,
 +
$$
 +
where  $  p = n / 2 $ if  $  n $ is even and  $  p = ( n + 1 ) / 2 $ if  $  n $ is odd. The subgroup of  $  G $
 +
consisting of the elements whose matrix in this basis takes the form  $  \| a _{ij} \| $ ,
 +
where  $  a _{ij} = 0 $
 +
for  $  i \neq j $
 +
and  $  a _{ii} a _{n-i+1,n-i+1} = 1 $
 +
for  $  i = 1 \dots p $ ,
 +
is a maximal torus in  $  G $ (thus the rank of  $  G $
 +
is equal to the integer part of  $  n / 2 $ ).
 +
In general, this basis does not belong to  $  V _{k} $ .
 +
However, there always is a basis  $  h _{1} \dots h _{n} $
 +
in  $  V _{k} $
 +
in which the quadratic form can be written as $$
 +
F ( x _{1} h _{1} + \dots + x _{n} h _{n} )  =
 +
$$
 +
$$
 +
=
 +
x _{1} x _{n} + \dots + x _{q} x _{n-q+1} + F _{0} ( x _{q+1} \dots x _{n-q} ) ,  q > p ,
 +
$$
 +
where  $  F _{0} $
 +
is a quadratic form which is anisotropic over  $  k $ (
 +
that is, the equation  $  F _{0} = 0 $
 +
only has the zero solution in  $  k $ ,
 +
see [[Witt decomposition|Witt decomposition]]). The subgroup of  $  G $
 +
consisting of the elements whose matrix in the basis  $  h _{1} \dots h _{n} $
 +
takes the form  $  \| a _{ij} \| $ ,
 +
where  $  a _{ij} = 0 $
 +
for  $  i \neq j $ ,
 +
$  a _{ii} a _{n-i+1,n-i+1} = 1 $
 +
for  $  i = 1 \dots q $
 +
and  $  a _{ii} = 1 $
 +
for  $  i = q + 1 \dots n - q $ ,
 +
is a maximal  $  k $-split torus in  $  G $ (so  $  \mathop{\rm rk}\nolimits _{k} \  G = q $
 +
and  $  G $ is split if and only if  $  q $ is the integer part of  $  n / 2 $ ).
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301090.png" /></td> </tr></table>
 
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301091.png" /> is a quadratic form which is anisotropic over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301092.png" /> (that is, the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301093.png" /> only has the zero solution in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301094.png" />, see [[Witt decomposition|Witt decomposition]]). The subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301095.png" /> consisting of the elements whose matrix in the basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301096.png" /> takes the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301097.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301098.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301099.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010100.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010101.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010102.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010103.png" />, is a maximal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010104.png" />-split torus in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010105.png" /> (so <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010106.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010107.png" /> is split if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010108.png" /> is the integer part of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010109.png" />).
+
Using maximal tori one associates to a reductive group $  G $
 
+
a [[Root system|root system]], which is a basic ingredient for the classification of reductive groups. Namely, let $  \mathfrak g $
Using maximal tori one associates to a reductive group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010110.png" /> a [[Root system|root system]], which is a basic ingredient for the classification of reductive groups. Namely, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010111.png" /> be the Lie algebra of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010112.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010113.png" /> be a fixed maximal torus in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010114.png" />. The adjoint representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010115.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010116.png" /> is rational and diagonalizable, so <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010117.png" /> decomposes into a direct sum of weight spaces for this representation. The set of non-zero weights of this representation (considered as a subset of its linear hull in the vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010118.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010119.png" /> is the group of rational characters of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010120.png" />) turns out to be a (reduced) root system. The [[Relative root system|relative root system]] is defined in a similar way: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010121.png" /> is defined over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010122.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010123.png" /> is a maximal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010124.png" />-split torus in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010125.png" />, then the set of non-zero weights of the adjoint representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010126.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010127.png" /> forms a root system (which need not be reduced) in some subspace of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010128.png" />. See also [[Weyl group|Weyl group]]; [[Semi-simple group|Semi-simple group]].
+
be the Lie algebra of $  G $
 +
and let $  T $
 +
be a fixed maximal torus in $  G $ .  
 +
The adjoint representation of $  T $
 +
in $  \mathfrak g $
 +
is rational and diagonalizable, so $  \mathfrak g $
 +
decomposes into a direct sum of weight spaces for this representation. The set of non-zero weights of this representation (considered as a subset of its linear hull in the vector space $  X (T) \otimes _{\mathbf Z} \mathbf R $ ,  
 +
where $  X (T) $
 +
is the group of rational characters of $  T $ )  
 +
turns out to be a (reduced) root system. The [[Relative root system|relative root system]] is defined in a similar way: If $  G $
 +
is defined over $  k $
 +
and $  S $
 +
is a maximal $  k $-split torus in $  G $ ,  
 +
then the set of non-zero weights of the adjoint representation of $  S $
 +
in $  \mathfrak g $
 +
forms a root system (which need not be reduced) in some subspace of $  X (S) \otimes _{\mathbf Z} \mathbf R $ .  
 +
See also [[Weyl group|Weyl group]]; [[Semi-simple group|Semi-simple group]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Borel,   "Linear algebraic groups" , Benjamin (1969)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Borel (ed.) G.D. Mostow (ed.) , ''Algebraic groups and discontinuous subgroups'' , ''Proc. Symp. Pure Math.'' , '''9''' , Amer. Math. Soc. (1966)</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Borel, "Linear algebraic groups" , Benjamin (1969) {{MR|0251042}} {{ZBL|0206.49801}} {{ZBL|0186.33201}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Borel (ed.) G.D. Mostow (ed.) , ''Algebraic groups and discontinuous subgroups'' , ''Proc. Symp. Pure Math.'' , '''9''' , Amer. Math. Soc. (1966) {{MR|0202512}} {{ZBL|0171.24105}} </TD></TR></table>
  
 
====Comments====
 
====Comments====
For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010129.png" />-forms see [[Form of an (algebraic) structure|Form of an (algebraic) structure]].
+
For $  k $-forms see [[Form of an (algebraic) structure|Form of an (algebraic) structure]].
  
 
See especially the article by A. Borel in [[#References|[2]]].
 
See especially the article by A. Borel in [[#References|[2]]].
  
A maximal torus of a connected real Lie group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010130.png" /> is a connected compact commutative Lie subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010131.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010132.png" /> not contained in any larger subgroup of the same type. As a Lie group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010133.png" /> is isomorphic to a direct product of copies of the multiplicative group of complex numbers of absolute value 1. Every maximal torus of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010134.png" /> is contained in a maximal compact subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010135.png" />; any two maximal tori of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010136.png" /> (as any two maximal compact subgroups) are conjugate in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010137.png" />. This, in a well-known sense, reduces the study of maximal tori to the case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010138.png" /> is compact.
+
A maximal torus of a connected real Lie group $  G $
 +
is a connected compact commutative Lie subgroup $  T $
 +
of $  G $
 +
not contained in any larger subgroup of the same type. As a Lie group $  T $
 +
is isomorphic to a direct product of copies of the multiplicative group of complex numbers of absolute value 1. Every maximal torus of $  G $
 +
is contained in a maximal compact subgroup of $  G $ ;  
 +
any two maximal tori of $  G $ (
 +
as any two maximal compact subgroups) are conjugate in $  G $ .  
 +
This, in a well-known sense, reduces the study of maximal tori to the case when $  G $
 +
is compact.
  
Now let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010139.png" /> be a compact group. The union of all maximal tori of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010140.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010141.png" /> and their intersection is the centre of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010142.png" />. The Lie algebra of a maximal torus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010143.png" /> is a maximal commutative subalgebra in the Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010144.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010145.png" />, and each maximal commutative subalgebra in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010146.png" /> can be obtained in this way. The centralizer of a maximal torus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010147.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010148.png" /> coincides with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010149.png" />. The adjoint representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010150.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010151.png" /> is diagonalizable and all non-zero weights of this representation form a [[Root system|root system]] in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010152.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010153.png" /> is the group of characters of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m063010154.png" />. This is a basic ingredient for the classification of compact Lie groups.
+
Now let $  G $
 +
be a compact group. The union of all maximal tori of $  G $
 +
is $  G $
 +
and their intersection is the centre of $  G $ .  
 +
The Lie algebra of a maximal torus $  T $
 +
is a maximal commutative subalgebra in the Lie algebra $  \mathfrak g $
 +
of $  G $ ,  
 +
and each maximal commutative subalgebra in $  \mathfrak g $
 +
can be obtained in this way. The centralizer of a maximal torus $  T $
 +
in $  G $
 +
coincides with $  T $ .  
 +
The adjoint representation of $  T $
 +
in $  \mathfrak g $
 +
is diagonalizable and all non-zero weights of this representation form a [[Root system|root system]] in $  X (T) \otimes _{\mathbf Z} \mathbf R $ ,  
 +
where $  X (T) $
 +
is the group of characters of $  T $ .  
 +
This is a basic ingredient for the classification of compact Lie groups.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> L.S. Pontryagin,   "Topological groups" , Princeton Univ. Press (1958) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> D.P. Zhelobenko,   "Compact Lie groups and their representations" , Amer. Math. Soc. (1973) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S. Helgason,   "Differential geometry, Lie groups, and symmetric spaces" , Acad. Press (1978)</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> L.S. Pontryagin, "Topological groups" , Princeton Univ. Press (1958) (Translated from Russian) {{MR|0201557}} {{ZBL|0022.17104}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> D.P. Zhelobenko, "Compact Lie groups and their representations" , Amer. Math. Soc. (1973) (Translated from Russian) {{MR|0473097}} {{MR|0473098}} {{ZBL|0228.22013}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S. Helgason, "Differential geometry, Lie groups, and symmetric spaces" , Acad. Press (1978) {{MR|0514561}} {{ZBL|0451.53038}} </TD></TR></table>
  
  
Line 40: Line 168:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> N. Bourbaki,   "Groupes et algèbres de Lie" , ''Eléments de mathématiques'' , Masson (1982) pp. Chapt. 9. Groupes de Lie réels compacts</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> Th. Bröcker,   T. Tom Dieck,   "Representations of compact Lie groups" , Springer (1985)</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> N. Bourbaki, "Groupes et algèbres de Lie" , ''Eléments de mathématiques'' , Masson (1982) pp. Chapt. 9. Groupes de Lie réels compacts {{MR|0682756}} {{ZBL|0505.22006}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> Th. Bröcker, T. Tom Dieck, "Representations of compact Lie groups" , Springer (1985) {{MR|0781344}} {{ZBL|0581.22009}} </TD></TR></table>

Latest revision as of 06:13, 22 November 2024

A maximal torus of a linear algebraic group $ G $ is an algebraic subgroup of $ G $ which is an algebraic torus and which is not contained in any larger subgroup of that type. Now let $ G $ be connected. The union of all maximal tori of $ G $ coincides with the set of all semi-simple elements of $ G $ (see Jordan decomposition) and their intersection coincides with the set of all semi-simple elements of the centre of $ G $ . Every maximal torus is contained in some Borel subgroup of $ G $ . The centralizer of a maximal torus is a Cartan subgroup of $ G $ ; it is always connected. Any two maximal tori of $ G $ are conjugate in $ G $ . If $ G $ is defined over a field $ k $ , then there is a maximal torus in $ G $ also defined over $ k $ ; its centralizer is also defined over $ k $ .


Let $ G $ be a reductive group defined over a field $ k $ . Consider the maximal subgroups among all algebraic subgroups of $ G $ which are $ k $-split algebraic tori. The maximal $ k $-split tori thus obtained are conjugate over $ k $ . The common dimension of these tori is called the $ k $-rank of $ G $ and is denoted by $ \mathop{\rm rk}\nolimits _{k} \ G $ . A maximal $ k $-split torus need not, in general, be a maximal torus, that is, $ \mathop{\rm rk}\nolimits _{k} \ G $ is in general less than the rank of $ G $ (which is equal to the dimension of a maximal torus in $ G $ ). If $ \mathop{\rm rk}\nolimits _{k} \ G = 0 $ , then $ G $ is called an anisotropic group over $ k $ , and if $ \mathop{\rm rk}\nolimits _{k} \ G $ coincides with the rank of $ G $ , then $ G $ is called a split group over $ k $ . If $ k $ is algebraically closed, then $ G $ is always split over $ k $ . In general, $ G $ is split over the separable closure of $ k $ .


Examples. Let $ k $ be a field and let $ \overline{k} $ be an algebraic closure. The group $ G = \mathop{\rm GL}\nolimits _{n} ( \overline{k} ) $ of non-singular matrices of order $ n $ with coefficients in $ \overline{k} $ (see Classical group; General linear group) is defined and split over the prime subfield of $ k $. The subgroup of all diagonal matrices is a maximal torus in $ G $ .


Let the characteristic of $ k $ be different from 2. Let $ V $ be an $ n $-dimensional vector space over $ \overline{k} $ and $ F $ a non-degenerate quadratic form on $ V $ defined over $ k $ (the latter means that in some basis $ e _{1} \dots e _{n} $ of $ V $ , the form $ F ( x _{1} e _{1} + \dots + x _{n} e _{n} ) $ is a polynomial in $ x _{1} \dots x _{n} $ with coefficients in $ k $ ). Let $ G $ be the group of all non-singular linear transformations of $ V $ with determinant 1 and preserving $ F $ . It is defined over $ k $ . Let $ V _{k} $ be the linear hull over $ k $ of $ e _{1} \dots e _{n} $ ; it is a $ k $-form of $ V $ . In $ V $ there always exists a basis $ f _{1} \dots f _{n} $ such that $$ F ( x _{1} f _{1} + \dots + x _{n} f _{n} ) = x _{1} x _{n} + x _{2} x _{n-1} + \dots + x _{p} x _{n-p+1} , $$ where $ p = n / 2 $ if $ n $ is even and $ p = ( n + 1 ) / 2 $ if $ n $ is odd. The subgroup of $ G $ consisting of the elements whose matrix in this basis takes the form $ \| a _{ij} \| $ , where $ a _{ij} = 0 $ for $ i \neq j $ and $ a _{ii} a _{n-i+1,n-i+1} = 1 $ for $ i = 1 \dots p $ , is a maximal torus in $ G $ (thus the rank of $ G $ is equal to the integer part of $ n / 2 $ ). In general, this basis does not belong to $ V _{k} $ . However, there always is a basis $ h _{1} \dots h _{n} $ in $ V _{k} $ in which the quadratic form can be written as $$ F ( x _{1} h _{1} + \dots + x _{n} h _{n} ) = $$ $$ = x _{1} x _{n} + \dots + x _{q} x _{n-q+1} + F _{0} ( x _{q+1} \dots x _{n-q} ) , q > p , $$ where $ F _{0} $ is a quadratic form which is anisotropic over $ k $ ( that is, the equation $ F _{0} = 0 $ only has the zero solution in $ k $ , see Witt decomposition). The subgroup of $ G $ consisting of the elements whose matrix in the basis $ h _{1} \dots h _{n} $ takes the form $ \| a _{ij} \| $ , where $ a _{ij} = 0 $ for $ i \neq j $ , $ a _{ii} a _{n-i+1,n-i+1} = 1 $ for $ i = 1 \dots q $ and $ a _{ii} = 1 $ for $ i = q + 1 \dots n - q $ , is a maximal $ k $-split torus in $ G $ (so $ \mathop{\rm rk}\nolimits _{k} \ G = q $ and $ G $ is split if and only if $ q $ is the integer part of $ n / 2 $ ).


Using maximal tori one associates to a reductive group $ G $ a root system, which is a basic ingredient for the classification of reductive groups. Namely, let $ \mathfrak g $ be the Lie algebra of $ G $ and let $ T $ be a fixed maximal torus in $ G $ . The adjoint representation of $ T $ in $ \mathfrak g $ is rational and diagonalizable, so $ \mathfrak g $ decomposes into a direct sum of weight spaces for this representation. The set of non-zero weights of this representation (considered as a subset of its linear hull in the vector space $ X (T) \otimes _{\mathbf Z} \mathbf R $ , where $ X (T) $ is the group of rational characters of $ T $ ) turns out to be a (reduced) root system. The relative root system is defined in a similar way: If $ G $ is defined over $ k $ and $ S $ is a maximal $ k $-split torus in $ G $ , then the set of non-zero weights of the adjoint representation of $ S $ in $ \mathfrak g $ forms a root system (which need not be reduced) in some subspace of $ X (S) \otimes _{\mathbf Z} \mathbf R $ . See also Weyl group; Semi-simple group.

References

[1] A. Borel, "Linear algebraic groups" , Benjamin (1969) MR0251042 Zbl 0206.49801 Zbl 0186.33201
[2] A. Borel (ed.) G.D. Mostow (ed.) , Algebraic groups and discontinuous subgroups , Proc. Symp. Pure Math. , 9 , Amer. Math. Soc. (1966) MR0202512 Zbl 0171.24105

Comments

For $ k $-forms see Form of an (algebraic) structure.

See especially the article by A. Borel in [2].

A maximal torus of a connected real Lie group $ G $ is a connected compact commutative Lie subgroup $ T $ of $ G $ not contained in any larger subgroup of the same type. As a Lie group $ T $ is isomorphic to a direct product of copies of the multiplicative group of complex numbers of absolute value 1. Every maximal torus of $ G $ is contained in a maximal compact subgroup of $ G $ ; any two maximal tori of $ G $ ( as any two maximal compact subgroups) are conjugate in $ G $ . This, in a well-known sense, reduces the study of maximal tori to the case when $ G $ is compact.

Now let $ G $ be a compact group. The union of all maximal tori of $ G $ is $ G $ and their intersection is the centre of $ G $ . The Lie algebra of a maximal torus $ T $ is a maximal commutative subalgebra in the Lie algebra $ \mathfrak g $ of $ G $ , and each maximal commutative subalgebra in $ \mathfrak g $ can be obtained in this way. The centralizer of a maximal torus $ T $ in $ G $ coincides with $ T $ . The adjoint representation of $ T $ in $ \mathfrak g $ is diagonalizable and all non-zero weights of this representation form a root system in $ X (T) \otimes _{\mathbf Z} \mathbf R $ , where $ X (T) $ is the group of characters of $ T $ . This is a basic ingredient for the classification of compact Lie groups.

References

[1] L.S. Pontryagin, "Topological groups" , Princeton Univ. Press (1958) (Translated from Russian) MR0201557 Zbl 0022.17104
[2] D.P. Zhelobenko, "Compact Lie groups and their representations" , Amer. Math. Soc. (1973) (Translated from Russian) MR0473097 MR0473098 Zbl 0228.22013
[3] S. Helgason, "Differential geometry, Lie groups, and symmetric spaces" , Acad. Press (1978) MR0514561 Zbl 0451.53038


Comments

References

[a1] N. Bourbaki, "Groupes et algèbres de Lie" , Eléments de mathématiques , Masson (1982) pp. Chapt. 9. Groupes de Lie réels compacts MR0682756 Zbl 0505.22006
[a2] Th. Bröcker, T. Tom Dieck, "Representations of compact Lie groups" , Springer (1985) MR0781344 Zbl 0581.22009
How to Cite This Entry:
Maximal torus. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximal_torus&oldid=16122
This article was adapted from an original article by V.L. Popov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article