Difference between revisions of "Harmonic polynomial"
(Importing text file) |
m (dots) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | A polynomial with | + | {{TEX|done}} |
+ | A polynomial with $x_1,\dotsc,x_n$ as variables that satisfies the [[Laplace equation|Laplace equation]]. Any harmonic polynomial may be represented as the sum of homogeneous harmonic polynomials. If $n=2$, there are only two linearly independent homogeneous harmonic polynomials of degree $m$ — for example, the real and the imaginary part of the expression $(x_1+ix_2)^m$. If $n=3$, the number of linearly independent homogeneous polynomials of degree $m$ is $2m+1$. In the general case — $n\geq2$ — the number of linearly independent homogeneous harmonic polynomials of degree $m$ is | ||
− | + | $$K_n^m-K_n^{m-2},\quad m\geq2,$$ | |
where | where | ||
− | + | $$K_n^m=\frac{n(n+1)\dotsm(n+m-1)}{m!}$$ | |
− | is the number of permutations of | + | is the number of permutations of $n$ objects taken $m$ at a time with $m$ repetitions. The homogeneous harmonic polynomials, $V_m(x)$, are also known as [[Spherical functions|spherical functions]] (in particular if $n=3$). If $n=3$, one may write, in spherical coordinates |
− | + | $$V_m(x)=r^mY_m(\theta,\phi),$$ | |
− | where | + | where $r=\sqrt{x_1^2+x_2^2+x_3^2}$ and $Y_m(\theta,\phi)$ is a spherical function of degree $m$. |
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S.L. Sobolev, "Partial differential equations of mathematical physics" , Pergamon (1964) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.N. [A.N. Tikhonov] Tichonoff, A.A. Samarskii, "Differentialgleichungen der mathematischen Physik" , Deutsch. Verlag Wissenschaft. (1959) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> M. Brélot, "Eléments de la théorie classique du potentiel" , Sorbonne Univ. Centre Doc. Univ. , Paris (1959)</TD></TR></table> | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S.L. Sobolev, "Partial differential equations of mathematical physics" , Pergamon (1964) (Translated from Russian) {{MR|0178220}} {{ZBL|0123.06508}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.N. [A.N. Tikhonov] Tichonoff, A.A. Samarskii, "Differentialgleichungen der mathematischen Physik" , Deutsch. Verlag Wissenschaft. (1959) (Translated from Russian) {{MR|104888}} {{ZBL|}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> M. Brélot, "Eléments de la théorie classique du potentiel" , Sorbonne Univ. Centre Doc. Univ. , Paris (1959) {{MR|0106366}} {{ZBL|0084.30903}} </TD></TR></table> |
''E.D. Solomentsev'' | ''E.D. Solomentsev'' | ||
Line 20: | Line 21: | ||
A finite linear combination of [[Harmonics|harmonics]]. Real-valued harmonic polynomials can be represented in the form | A finite linear combination of [[Harmonics|harmonics]]. Real-valued harmonic polynomials can be represented in the form | ||
− | + | $$\sum_{k=1}^NA_k\sin(\omega_kx+\phi_k)$$ | |
− | for a given natural number | + | for a given natural number $N$, non-negative $A_k$, and real $\omega_k$, $\phi_k$, $k=1,\dotsc,N$. Complex-valued harmonic polynomials can be represented in the form |
− | + | $$\sum_{k=-m}^nc_ke^{i\omega_kx}$$ | |
− | where | + | where $n$ and $m$ are natural numbers, $\omega_k$ is real and the $c_k$, $k=-m,-m+1,\dotsc,n$, are complex. Harmonic polynomials are the simplest almost-periodic functions (cf. [[Almost-periodic function|Almost-periodic function]]). |
Latest revision as of 13:05, 14 February 2020
A polynomial with $x_1,\dotsc,x_n$ as variables that satisfies the Laplace equation. Any harmonic polynomial may be represented as the sum of homogeneous harmonic polynomials. If $n=2$, there are only two linearly independent homogeneous harmonic polynomials of degree $m$ — for example, the real and the imaginary part of the expression $(x_1+ix_2)^m$. If $n=3$, the number of linearly independent homogeneous polynomials of degree $m$ is $2m+1$. In the general case — $n\geq2$ — the number of linearly independent homogeneous harmonic polynomials of degree $m$ is
$$K_n^m-K_n^{m-2},\quad m\geq2,$$
where
$$K_n^m=\frac{n(n+1)\dotsm(n+m-1)}{m!}$$
is the number of permutations of $n$ objects taken $m$ at a time with $m$ repetitions. The homogeneous harmonic polynomials, $V_m(x)$, are also known as spherical functions (in particular if $n=3$). If $n=3$, one may write, in spherical coordinates
$$V_m(x)=r^mY_m(\theta,\phi),$$
where $r=\sqrt{x_1^2+x_2^2+x_3^2}$ and $Y_m(\theta,\phi)$ is a spherical function of degree $m$.
References
[1] | S.L. Sobolev, "Partial differential equations of mathematical physics" , Pergamon (1964) (Translated from Russian) MR0178220 Zbl 0123.06508 |
[2] | A.N. [A.N. Tikhonov] Tichonoff, A.A. Samarskii, "Differentialgleichungen der mathematischen Physik" , Deutsch. Verlag Wissenschaft. (1959) (Translated from Russian) MR104888 |
[3] | M. Brélot, "Eléments de la théorie classique du potentiel" , Sorbonne Univ. Centre Doc. Univ. , Paris (1959) MR0106366 Zbl 0084.30903 |
E.D. Solomentsev
A finite linear combination of harmonics. Real-valued harmonic polynomials can be represented in the form
$$\sum_{k=1}^NA_k\sin(\omega_kx+\phi_k)$$
for a given natural number $N$, non-negative $A_k$, and real $\omega_k$, $\phi_k$, $k=1,\dotsc,N$. Complex-valued harmonic polynomials can be represented in the form
$$\sum_{k=-m}^nc_ke^{i\omega_kx}$$
where $n$ and $m$ are natural numbers, $\omega_k$ is real and the $c_k$, $k=-m,-m+1,\dotsc,n$, are complex. Harmonic polynomials are the simplest almost-periodic functions (cf. Almost-periodic function).
Harmonic polynomial. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Harmonic_polynomial&oldid=16082