Namespaces
Variants
Actions

Difference between revisions of "Wedderburn-Mal'tsev theorem"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097350/w0973501.png" /> be a finite-dimensional associative algebra (cf. [[Associative rings and algebras|Associative rings and algebras]]) over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097350/w0973502.png" /> with radical <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097350/w0973503.png" />, and let the quotient algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097350/w0973504.png" /> be a [[Separable algebra|separable algebra]] (for algebras over a field of characteristic zero this is always true). Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097350/w0973505.png" /> can be decomposed (as a linear space) into a direct sum of the radical <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097350/w0973506.png" /> and some semi-simple subalgebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097350/w0973507.png" />:
+
<!--
 +
w0973501.png
 +
$#A+1 = 26 n = 0
 +
$#C+1 = 26 : ~/encyclopedia/old_files/data/W097/W.0907350 Wedderburn\ANDMal\AAptsev theorem
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097350/w0973508.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
and if there exists another decomposition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097350/w0973509.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097350/w09735010.png" /> is a semi-simple subalgebra, then there exists an automorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097350/w09735011.png" /> of the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097350/w09735012.png" /> which maps <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097350/w09735013.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097350/w09735014.png" /> (the automorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097350/w09735015.png" /> is inner, i.e. there exist elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097350/w09735016.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097350/w09735017.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097350/w09735018.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097350/w09735019.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097350/w09735020.png" />). The existence of this decomposition was shown by J.H.M. Wedderburn [[#References|[1]]] and the uniqueness, up to an automorphism of the semi-simple term, was proved by A.I. Mal'tsev [[#References|[2]]]. This theorem, together with Wedderburn's theorem (cf. [[Associative rings and algebras|Associative rings and algebras]]) on the structure of semi-simple algebras constitutes the central part of the classical theory of finite-dimensional algebras.
+
Let 
 +
be a finite-dimensional associative algebra (cf. [[Associative rings and algebras|Associative rings and algebras]]) over a field    F
 +
with radical    N ,
 +
and let the quotient algebra    A/N
 +
be a [[Separable algebra|separable algebra]] (for algebras over a field of characteristic zero this is always true). Then    A
 +
can be decomposed (as a linear space) into a direct sum of the radical    N
 +
and some semi-simple subalgebra    S :
 +
 
 +
$$
 +
A  =  N \oplus S,
 +
$$
 +
 
 +
and if there exists another decomposition $  A = N \oplus {S _ {1} } $,  
 +
where   S _ {1}
 +
is a semi-simple subalgebra, then there exists an automorphism   \phi
 +
of the algebra   A
 +
which maps   S
 +
onto   S _ {1} (
 +
the automorphism   \phi
 +
is inner, i.e. there exist elements   a, a  ^  \prime  \in A
 +
such that $  a \cdot a  ^  \prime  = a  ^  \prime  \cdot a = 0 $
 +
and $  x \phi = a \cdot x \cdot a  ^  \prime  $
 +
for all   x \in A ,  
 +
where $  x \cdot y = x + y + xy $).  
 +
The existence of this decomposition was shown by J.H.M. Wedderburn [[#References|[1]]] and the uniqueness, up to an automorphism of the semi-simple term, was proved by A.I. Mal'tsev [[#References|[2]]]. This theorem, together with Wedderburn's theorem (cf. [[Associative rings and algebras|Associative rings and algebras]]) on the structure of semi-simple algebras constitutes the central part of the classical theory of finite-dimensional algebras.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  J.H.M. Wedderburn,  "On hypercomplex numbers"  ''Proc. London Math. Soc. (2)'' , '''6'''  (1908)  pp. 77–118</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A.I. Mal'tsev,  "On the representation of an algebra as a direct sum of the radical and a semi-simple subalgebra"  ''Dokl. Akad. Nauk SSSR'' , '''36''' :  1  (1942)  pp. 42–45  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  A.A. Albert,  "Structure of algebras" , Amer. Math. Soc.  (1939)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  C.W. Curtis,  I. Reiner,  "Representation theory of finite groups and associative algebras" , Interscience  (1962)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  J.H.M. Wedderburn,  "On hypercomplex numbers"  ''Proc. London Math. Soc. (2)'' , '''6'''  (1908)  pp. 77–118</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A.I. Mal'tsev,  "On the representation of an algebra as a direct sum of the radical and a semi-simple subalgebra"  ''Dokl. Akad. Nauk SSSR'' , '''36''' :  1  (1942)  pp. 42–45  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  A.A. Albert,  "Structure of algebras" , Amer. Math. Soc.  (1939)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  C.W. Curtis,  I. Reiner,  "Representation theory of finite groups and associative algebras" , Interscience  (1962)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
A similar theorem holds for Lie algebras. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097350/w09735021.png" /> be a finite-dimensional Lie algebra over a field of characteristic zero with radical <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097350/w09735022.png" />. Then there exists a semi-simple subalgebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097350/w09735023.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097350/w09735024.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097350/w09735025.png" />. Such a decomposition is called a Levi decomposition and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097350/w09735026.png" /> is called a Levi factor or Levi subalgebra. It is unique up to inner automorphisms.
+
A similar theorem holds for Lie algebras. Let   \mathfrak g
 +
be a finite-dimensional Lie algebra over a field of characteristic zero with radical   \mathfrak r .  
 +
Then there exists a semi-simple subalgebra   \mathfrak h
 +
of   \mathfrak g
 +
such that $  \mathfrak g = \mathfrak h \oplus \mathfrak r $.  
 +
Such a decomposition is called a Levi decomposition and   \mathfrak h
 +
is called a Levi factor or Levi subalgebra. It is unique up to inner automorphisms.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  N. Jacobson,  "Lie algebras" , Dover, reprint  (1962)  pp. 91ff  ((also: Dover, reprint, 1979))</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  N. Jacobson,  "Lie algebras" , Dover, reprint  (1962)  pp. 91ff  ((also: Dover, reprint, 1979))</TD></TR></table>

Latest revision as of 08:28, 6 June 2020


Let A be a finite-dimensional associative algebra (cf. Associative rings and algebras) over a field F with radical N , and let the quotient algebra A/N be a separable algebra (for algebras over a field of characteristic zero this is always true). Then A can be decomposed (as a linear space) into a direct sum of the radical N and some semi-simple subalgebra S :

A = N \oplus S,

and if there exists another decomposition A = N \oplus {S _ {1} } , where S _ {1} is a semi-simple subalgebra, then there exists an automorphism \phi of the algebra A which maps S onto S _ {1} ( the automorphism \phi is inner, i.e. there exist elements a, a ^ \prime \in A such that a \cdot a ^ \prime = a ^ \prime \cdot a = 0 and x \phi = a \cdot x \cdot a ^ \prime for all x \in A , where x \cdot y = x + y + xy ). The existence of this decomposition was shown by J.H.M. Wedderburn [1] and the uniqueness, up to an automorphism of the semi-simple term, was proved by A.I. Mal'tsev [2]. This theorem, together with Wedderburn's theorem (cf. Associative rings and algebras) on the structure of semi-simple algebras constitutes the central part of the classical theory of finite-dimensional algebras.

References

[1] J.H.M. Wedderburn, "On hypercomplex numbers" Proc. London Math. Soc. (2) , 6 (1908) pp. 77–118
[2] A.I. Mal'tsev, "On the representation of an algebra as a direct sum of the radical and a semi-simple subalgebra" Dokl. Akad. Nauk SSSR , 36 : 1 (1942) pp. 42–45 (In Russian)
[3] A.A. Albert, "Structure of algebras" , Amer. Math. Soc. (1939)
[4] C.W. Curtis, I. Reiner, "Representation theory of finite groups and associative algebras" , Interscience (1962)

Comments

A similar theorem holds for Lie algebras. Let \mathfrak g be a finite-dimensional Lie algebra over a field of characteristic zero with radical \mathfrak r . Then there exists a semi-simple subalgebra \mathfrak h of \mathfrak g such that \mathfrak g = \mathfrak h \oplus \mathfrak r . Such a decomposition is called a Levi decomposition and \mathfrak h is called a Levi factor or Levi subalgebra. It is unique up to inner automorphisms.

References

[a1] N. Jacobson, "Lie algebras" , Dover, reprint (1962) pp. 91ff ((also: Dover, reprint, 1979))
How to Cite This Entry:
Wedderburn-Mal'tsev theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Wedderburn-Mal%27tsev_theorem&oldid=15934
This article was adapted from an original article by L.A. Bokut' (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article