Difference between revisions of "Bieberbach polynomials"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | b0161701.png | ||
+ | $#A+1 = 26 n = 0 | ||
+ | $#C+1 = 26 : ~/encyclopedia/old_files/data/B016/B.0106170 Bieberbach polynomials | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
Extremal polynomials which approximate a function that conformally maps a given simply-connected domain onto a disc. These polynomials were first studied by L. Bieberbach [[#References|[1]]] in the context of the problem of the approximate computation of a conformal mapping. | Extremal polynomials which approximate a function that conformally maps a given simply-connected domain onto a disc. These polynomials were first studied by L. Bieberbach [[#References|[1]]] in the context of the problem of the approximate computation of a conformal mapping. | ||
− | Let | + | Let $ G $ |
+ | be a simply-connected domain in the finite part of the plane bounded by a curve $ \Gamma $, | ||
+ | and let the function $ w = \phi (z) $ | ||
+ | map this domain conformally and univalently onto the disc $ | w | < r _ {0} $ | ||
+ | under the conditions $ \phi (z _ {0} ) = 0 $ | ||
+ | and $ \phi ^ \prime (z _ {0} ) = 1 $, | ||
+ | where $ z _ {0} $ | ||
+ | is an arbitrary fixed point of $ G $ | ||
+ | and $ r _ {0} $ | ||
+ | depends on $ z _ {0} $. | ||
+ | The polynomial $ \pi _ {n} (z) $ | ||
+ | which minimizes the integral | ||
− | + | $$ | |
+ | J (F _ {n} ) = \ | ||
+ | {\int\limits \int\limits } _ {G} | F _ {n} ^ { \prime } (z) | ^ {2} dx dy | ||
+ | $$ | ||
− | in the class of all polynomials | + | in the class of all polynomials $ F _ {n} (z) $ |
+ | of degree $ n $ | ||
+ | subject to the conditions $ F _ {n} (z _ {0} ) = 0 $ | ||
+ | and $ F _ {n} ^ { \prime } (z _ {0} ) = 1 $ | ||
+ | is called the Bieberbach polynomial. In the class of all functions which are analytic in the domain $ G $ | ||
+ | and which satisfy the same conditions, this integral is minimized by the mapping function $ w = \phi (z) $. | ||
+ | If the contour $ \Gamma $ | ||
+ | is a Jordan curve, the sequence $ \{ \pi _ {n} (z) \} $ | ||
+ | converges uniformly to the function $ \phi (z) $ | ||
+ | inside $ G $. | ||
+ | In the closed domain $ \overline{G}\; $ | ||
+ | there need not be convergence [[#References|[2]]]. If the contour $ \Gamma $ | ||
+ | satisfies certain additional smoothness conditions, the sequence $ \{ \pi _ {n} (z) \} $ | ||
+ | converges uniformly in the closed domain, and the rate of convergence depends on the degree of smoothness of $ \Gamma $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> L. Bieberbach, "Zur Theorie und Praxis der konformen Abbildung" ''Rend. Circ. Mat. Palermo'' , '''38''' (1914) pp. 98–112</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M.V. Keldysh, "Sur l'approximation en moyenne quadratique des fonctions analytiques" ''Mat. Sb.'' , '''5 (47)''' : 2 (1939) pp. 391–401</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S.N. Mergelyan, "Some questions of the constructive theory of functions" ''Trudy Mat. Inst. Steklov.'' , '''37''' , Moscow (1951) (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> P.K. Suetin, "Polynomials orthogonal over a region and Bieberbach polynomials" ''Proc. Steklov Inst. Math.'' , '''100''' (1974) ''Trudy Mat. Inst. Steklov.'' , '''100''' (1971)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> L. Bieberbach, "Zur Theorie und Praxis der konformen Abbildung" ''Rend. Circ. Mat. Palermo'' , '''38''' (1914) pp. 98–112</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M.V. Keldysh, "Sur l'approximation en moyenne quadratique des fonctions analytiques" ''Mat. Sb.'' , '''5 (47)''' : 2 (1939) pp. 391–401</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S.N. Mergelyan, "Some questions of the constructive theory of functions" ''Trudy Mat. Inst. Steklov.'' , '''37''' , Moscow (1951) (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> P.K. Suetin, "Polynomials orthogonal over a region and Bieberbach polynomials" ''Proc. Steklov Inst. Math.'' , '''100''' (1974) ''Trudy Mat. Inst. Steklov.'' , '''100''' (1971)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== |
Latest revision as of 10:59, 29 May 2020
Extremal polynomials which approximate a function that conformally maps a given simply-connected domain onto a disc. These polynomials were first studied by L. Bieberbach [1] in the context of the problem of the approximate computation of a conformal mapping.
Let $ G $ be a simply-connected domain in the finite part of the plane bounded by a curve $ \Gamma $, and let the function $ w = \phi (z) $ map this domain conformally and univalently onto the disc $ | w | < r _ {0} $ under the conditions $ \phi (z _ {0} ) = 0 $ and $ \phi ^ \prime (z _ {0} ) = 1 $, where $ z _ {0} $ is an arbitrary fixed point of $ G $ and $ r _ {0} $ depends on $ z _ {0} $. The polynomial $ \pi _ {n} (z) $ which minimizes the integral
$$ J (F _ {n} ) = \ {\int\limits \int\limits } _ {G} | F _ {n} ^ { \prime } (z) | ^ {2} dx dy $$
in the class of all polynomials $ F _ {n} (z) $ of degree $ n $ subject to the conditions $ F _ {n} (z _ {0} ) = 0 $ and $ F _ {n} ^ { \prime } (z _ {0} ) = 1 $ is called the Bieberbach polynomial. In the class of all functions which are analytic in the domain $ G $ and which satisfy the same conditions, this integral is minimized by the mapping function $ w = \phi (z) $. If the contour $ \Gamma $ is a Jordan curve, the sequence $ \{ \pi _ {n} (z) \} $ converges uniformly to the function $ \phi (z) $ inside $ G $. In the closed domain $ \overline{G}\; $ there need not be convergence [2]. If the contour $ \Gamma $ satisfies certain additional smoothness conditions, the sequence $ \{ \pi _ {n} (z) \} $ converges uniformly in the closed domain, and the rate of convergence depends on the degree of smoothness of $ \Gamma $.
References
[1] | L. Bieberbach, "Zur Theorie und Praxis der konformen Abbildung" Rend. Circ. Mat. Palermo , 38 (1914) pp. 98–112 |
[2] | M.V. Keldysh, "Sur l'approximation en moyenne quadratique des fonctions analytiques" Mat. Sb. , 5 (47) : 2 (1939) pp. 391–401 |
[3] | S.N. Mergelyan, "Some questions of the constructive theory of functions" Trudy Mat. Inst. Steklov. , 37 , Moscow (1951) (In Russian) |
[4] | P.K. Suetin, "Polynomials orthogonal over a region and Bieberbach polynomials" Proc. Steklov Inst. Math. , 100 (1974) Trudy Mat. Inst. Steklov. , 100 (1971) |
Comments
A good additional reference is [a1].
References
[a1] | D. Gaier, "Vorlesungen über Approximation im Komplexen" , Birkhäuser (1980) |
Bieberbach polynomials. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bieberbach_polynomials&oldid=15907