Difference between revisions of "Conditional density"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | c0244701.png | ||
+ | $#A+1 = 29 n = 0 | ||
+ | $#C+1 = 29 : ~/encyclopedia/old_files/data/C024/C.0204470 Conditional density | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | be the | + | The density of a [[Conditional distribution|conditional distribution]]. Let $ ( \Omega , {\mathcal A} , {\mathsf P} ) $ |
+ | be a probability space, let $ \mathfrak B $ | ||
+ | be the $ \sigma $- | ||
+ | algebra of Borel sets on the line, let $ \mathfrak F $ | ||
+ | be a sub- $ \sigma $- | ||
+ | algebra of $ {\mathcal A} $, | ||
+ | let | ||
− | + | $$ | |
+ | Q ( \omega , B ) = \ | ||
+ | {\mathsf P} \{ X \in B \mid \mathfrak F \} ,\ \ | ||
+ | \omega \in \Omega ,\ \ | ||
+ | B \in \mathfrak B , | ||
+ | $$ | ||
− | be the conditional distribution | + | be the conditional distribution of $ X $ |
+ | with respect to $ \mathfrak F $, | ||
+ | and let | ||
− | + | $$ | |
+ | F _ {X} ( x \mid \mathfrak F ) \ | ||
+ | = Q ( \omega , ( - \infty , x ) ) | ||
+ | $$ | ||
− | + | be the conditional distribution function of $ X $ | |
+ | with respect to $ \mathfrak F $. | ||
+ | If | ||
− | + | $$ | |
+ | F _ {X} ( x \mid \mathfrak F ) = \ | ||
+ | \int\limits _ {- \infty } ^ { x } | ||
+ | f _ {X} ( t \mid \mathfrak F ) d t , | ||
+ | $$ | ||
− | + | then $ f _ {X} ( x \mid \mathfrak F ) $ | |
+ | is called the conditional density of the distribution of $ X $ | ||
+ | with respect to the $ \sigma $- | ||
+ | algebra $ \mathfrak F $. | ||
− | defines the conditional density of the distribution of the random variable | + | If $ X $ |
+ | and $ Y $ | ||
+ | are random variables, $ f _ {Y} ( y) $ | ||
+ | is the density of the distribution of $ Y $ | ||
+ | and $ f _ {X,Y} ( x , y ) $ | ||
+ | is the joint density of the distribution of $ X $ | ||
+ | and $ Y $, | ||
+ | then | ||
+ | |||
+ | $$ | ||
+ | f _ {X} ( x \mid Y = y ) = \ | ||
+ | |||
+ | \frac{1}{f _ {Y} ( y) } | ||
+ | |||
+ | f _ {X,Y} ( x , y ) | ||
+ | $$ | ||
+ | |||
+ | defines the conditional density of the distribution of the random variable $ X $ | ||
+ | for fixed values $ y $ | ||
+ | of $ Y $ | ||
+ | for which $ f _ {Y} ( y) \neq 0 $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> Yu.V. [Yu.V. Prokhorov] Prohorov, Yu.A. Rozanov, "Probability theory, basic concepts. Limit theorems, random processes" , Springer (1969) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> Yu.V. [Yu.V. Prokhorov] Prohorov, Yu.A. Rozanov, "Probability theory, basic concepts. Limit theorems, random processes" , Springer (1969) (Translated from Russian)</TD></TR></table> |
Latest revision as of 17:46, 4 June 2020
The density of a conditional distribution. Let $ ( \Omega , {\mathcal A} , {\mathsf P} ) $
be a probability space, let $ \mathfrak B $
be the $ \sigma $-
algebra of Borel sets on the line, let $ \mathfrak F $
be a sub- $ \sigma $-
algebra of $ {\mathcal A} $,
let
$$ Q ( \omega , B ) = \ {\mathsf P} \{ X \in B \mid \mathfrak F \} ,\ \ \omega \in \Omega ,\ \ B \in \mathfrak B , $$
be the conditional distribution of $ X $ with respect to $ \mathfrak F $, and let
$$ F _ {X} ( x \mid \mathfrak F ) \ = Q ( \omega , ( - \infty , x ) ) $$
be the conditional distribution function of $ X $ with respect to $ \mathfrak F $. If
$$ F _ {X} ( x \mid \mathfrak F ) = \ \int\limits _ {- \infty } ^ { x } f _ {X} ( t \mid \mathfrak F ) d t , $$
then $ f _ {X} ( x \mid \mathfrak F ) $ is called the conditional density of the distribution of $ X $ with respect to the $ \sigma $- algebra $ \mathfrak F $.
If $ X $ and $ Y $ are random variables, $ f _ {Y} ( y) $ is the density of the distribution of $ Y $ and $ f _ {X,Y} ( x , y ) $ is the joint density of the distribution of $ X $ and $ Y $, then
$$ f _ {X} ( x \mid Y = y ) = \ \frac{1}{f _ {Y} ( y) } f _ {X,Y} ( x , y ) $$
defines the conditional density of the distribution of the random variable $ X $ for fixed values $ y $ of $ Y $ for which $ f _ {Y} ( y) \neq 0 $.
References
[1] | Yu.V. [Yu.V. Prokhorov] Prohorov, Yu.A. Rozanov, "Probability theory, basic concepts. Limit theorems, random processes" , Springer (1969) (Translated from Russian) |
Conditional density. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Conditional_density&oldid=15893