Namespaces
Variants
Actions

Difference between revisions of "Excessive function"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
e0368201.png
 +
$#A+1 = 64 n = 0
 +
$#C+1 = 64 : ~/encyclopedia/old_files/data/E036/E.0306820 Excessive function
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''for a Markov process''
 
''for a Markov process''
  
 
The analogue of a non-negative superharmonic function.
 
The analogue of a non-negative superharmonic function.
  
Suppose that in a measurable space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e0368201.png" /> a homogeneous Markov chain is given with single-step transition probabilities <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e0368202.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e0368203.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e0368204.png" />). A measurable function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e0368205.png" /> relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e0368206.png" /> is said to be excessive for this chain if
+
Suppose that in a measurable space $  ( E , {\mathcal B} ) $
 +
a homogeneous Markov chain is given with single-step transition probabilities $  {\mathsf P} ( x , B ) $(
 +
$  x \in E $,  
 +
$  B \in {\mathcal B} $).  
 +
A measurable function $  f :  E \rightarrow [ 0 , \infty ] $
 +
relative to $  {\mathcal B} $
 +
is said to be excessive for this chain if
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e0368207.png" /></td> </tr></table>
+
$$
 +
\int\limits _ { E } f ( y) {\mathsf P} ( x , d y )  \leq  f ( x)
 +
$$
  
everywhere in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e0368208.png" />. For an indecomposable chain with an at most countable set of states, among the excessive functions there exist non-constant ones if and only if at least one of the states is non-recurrent.
+
everywhere in $  E $.  
 +
For an indecomposable chain with an at most countable set of states, among the excessive functions there exist non-constant ones if and only if at least one of the states is non-recurrent.
  
For a given homogeneous Markov process <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e0368209.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682010.png" /> with [[Transition function|transition function]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682011.png" />, the definition of an excessive function is somewhat more complicated. A set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682012.png" /> belongs to the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682013.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682014.png" /> if for any finite measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682015.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682016.png" /> one can find sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682017.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682018.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682019.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682020.png" />. A function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682021.png" /> is said to be excessive if it is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682022.png" />-measurable and if for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682023.png" /> everywhere in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682024.png" />:
+
For a given homogeneous Markov process $  X = ( x _ {t} , \zeta , {\mathcal F} _ {t} , {\mathsf P} _ {x} ) $
 +
in $  ( E , {\mathcal B} ) $
 +
with [[Transition function|transition function]] $  P ( t , x , B ) $,  
 +
the definition of an excessive function is somewhat more complicated. A set $  B $
 +
belongs to the $  \sigma $-
 +
algebra $  \overline {\mathcal B} \; $
 +
if for any finite measure $  \mu $
 +
on $  {\mathcal B} $
 +
one can find sets $  B _  \mu  ^ {1} $
 +
and $  B _  \mu  ^ {2} $
 +
such that $  B _  \mu  ^ {1} \subset  B \subset  B _  \mu  ^ {2} $
 +
and $  \mu ( B _  \mu  ^ {2} \setminus  B _  \mu  ^ {1} ) = 0 $.  
 +
A function $  f :  E \rightarrow [ 0 , \infty ] $
 +
is said to be excessive if it is $  \overline {\mathcal B} \; $-
 +
measurable and if for $  t \geq  0 $
 +
everywhere in $  E $:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682025.png" /></td> </tr></table>
+
$$
 +
P  ^ {t} f ( x)  = \int\limits f ( y) P ( t , x , d y )  \leq  f ( x ) ,
 +
$$
  
 
and
 
and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682026.png" /></td> </tr></table>
+
$$
 +
f ( x)  = \lim\limits _ {s \downarrow 0 }  P  ^ {s} f ( x) .
 +
$$
  
For the part of a Wiener process in a certain domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682027.png" /> (see [[Functional of a Markov process|Functional of a Markov process]]) the class of excessive functions is the same as that of superharmonic functions supplemented by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682028.png" />.
+
For the part of a Wiener process in a certain domain $  E \subset  \mathbf R  ^ {n} $(
 +
see [[Functional of a Markov process|Functional of a Markov process]]) the class of excessive functions is the same as that of superharmonic functions supplemented by $  f ( x) \equiv \infty $.
  
In the case of a standard process <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682029.png" /> in a locally compact separable space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682030.png" /> the inequality
+
In the case of a standard process $  X $
 +
in a locally compact separable space $  E $
 +
the inequality
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682031.png" /></td> </tr></table>
+
$$
 +
M _ {x} f ( x _  \tau  )  \leq  f ( x ) ,
 +
$$
  
for an excessive function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682032.png" />, is satisfied throughout <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682033.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682034.png" /> is the Markov moment, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682035.png" /> is the mathematical expectation corresponding to the measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682036.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682037.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682038.png" />. Another frequently used property of an excessive function is that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682039.png" />-almost certainly the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682040.png" /> is right continuous on the interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682041.png" /> (see [[#References|[3]]]).
+
for an excessive function $  f ( x) $,  
 +
is satisfied throughout $  E $,  
 +
where $  \tau $
 +
is the Markov moment, $  M _ {x} $
 +
is the mathematical expectation corresponding to the measure $  {\mathsf P} _ {x} $
 +
and $  f ( x _  \tau  ) = 0 $
 +
for $  \tau \geq  \zeta $.  
 +
Another frequently used property of an excessive function is that $  {\mathsf P} _ {x} $-
 +
almost certainly the function $  f ( x _ {t} ) $
 +
is right continuous on the interval $  [ 0 , \zeta ] $(
 +
see [[#References|[3]]]).
  
An excessive function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682042.png" /> is called harmonic if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682043.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682044.png" /> is the first exit time of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682045.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682046.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682047.png" /> being any given compact set. A potential is, by definition, any excessive function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682048.png" /> for which
+
An excessive function $  f ( x) < \infty $
 +
is called harmonic if $  f ( x) \equiv M _ {x} f ( x _  \tau  ) $,  
 +
where $  \tau $
 +
is the first exit time of $  X $
 +
from $  K $,  
 +
$  K \subset  E $
 +
being any given compact set. A potential is, by definition, any excessive function $  f ( x) < \infty $
 +
for which
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682049.png" /></td> </tr></table>
+
$$
 +
\lim\limits _ {n \rightarrow \infty }  M _ {x} f ( x _ {\tau _ {n}  } )  = 0
 +
$$
  
for any choice of Markov moments <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682050.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682051.png" />, such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682052.png" />, as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682053.png" />. For the part of a Wiener process in a domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682054.png" /> harmonic functions and potentials are, respectively, non-negative harmonic functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682055.png" /> in the classical sense and Green potentials of Borel measures concentrated on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682056.png" />.
+
for any choice of Markov moments $  \tau _ {n} $,  
 +
$  n \geq  1 $,  
 +
such that $  \tau _ {n} \rightarrow \zeta $,  
 +
as $  n \rightarrow \infty $.  
 +
For the part of a Wiener process in a domain $  E \subset  \mathbf R  ^ {n} $
 +
harmonic functions and potentials are, respectively, non-negative harmonic functions on $  E $
 +
in the classical sense and Green potentials of Borel measures concentrated on $  E $.
  
An example of a potential is the potential <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682057.png" /> of an additive functional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682058.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682059.png" />, provided that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682060.png" />. An excessive function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682061.png" /> is the potential of an additive functional if and only if
+
An example of a potential is the potential $  M _ {x} \gamma _  \zeta  $
 +
of an additive functional $  \gamma _ {t} \geq  0 $
 +
in $  X $,  
 +
provided that $  M _ {x} \gamma _  \zeta  < \infty $.  
 +
An excessive function $  f ( x) < \infty $
 +
is the potential of an additive functional if and only if
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682062.png" /></td> </tr></table>
+
$$
 +
\lim\limits _ {n \rightarrow \infty }  M _ {x} f ( x _ {\tau _ {n}  } )  = 0 ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682063.png" /> is the first entry time of the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036820/e03682064.png" />.
+
where $  \tau _ {n} $
 +
is the first entry time of the set $  \{ {x } : {f ( x) \geq  n } \} $.
  
 
Within the framework of Brélot's axiomatic theory of harmonic spaces all non-negative superharmonic functions are excessive for some standard process.
 
Within the framework of Brélot's axiomatic theory of harmonic spaces all non-negative superharmonic functions are excessive for some standard process.
Line 41: Line 119:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1a]</TD> <TD valign="top">  G.A. Hunt,  "Markov processes and potentials I"  ''Illinois J. Math.'' , '''1''' :  1  (1957)  pp. 44–93</TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top">  G.A. Hunt,  "Markov processes and potentials II"  ''Illinois J. Math.'' , '''1''' :  3  (1957)  pp. 316–369</TD></TR><TR><TD valign="top">[1c]</TD> <TD valign="top">  G.A. Hunt,  "Markov processes and potentials III"  ''Illinois J. Math.'' , '''2''' :  2  (1958)  pp. 151–213</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A.N. Shiryaev,  "Statistical sequential analysis" , Amer. Math. Soc.  (1973)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  E.B. Dynkin,  "Markov processes" , '''1–2''' , Springer  (1965)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  R.K. Getoor,  "Markov processes: Ray processes and right processes" , ''Lect. notes in math.'' , '''440''' , Springer  (1975)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  M.G. Shur,  "Functions harmonic for a Markov process"  ''Math. Notes'' , '''13'''  (1973)  pp. 355–359  ''Mat. Zametki'' , '''13''' :  4  (1973)  pp. 587–596</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  P.A. Meyer,  "Fonctionelles multiplicatives et additives de Markov"  ''Ann. Inst. Fourier'' , '''12'''  (1962)  pp. 125–230</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  P.A. Meyer,  "Brélot's axiomatic theory of the Dirichlet problem and Hunt's theory"  ''Ann. Inst. Fourier'' , '''13'''  (1963)  pp. 357–372</TD></TR></table>
 
<table><TR><TD valign="top">[1a]</TD> <TD valign="top">  G.A. Hunt,  "Markov processes and potentials I"  ''Illinois J. Math.'' , '''1''' :  1  (1957)  pp. 44–93</TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top">  G.A. Hunt,  "Markov processes and potentials II"  ''Illinois J. Math.'' , '''1''' :  3  (1957)  pp. 316–369</TD></TR><TR><TD valign="top">[1c]</TD> <TD valign="top">  G.A. Hunt,  "Markov processes and potentials III"  ''Illinois J. Math.'' , '''2''' :  2  (1958)  pp. 151–213</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A.N. Shiryaev,  "Statistical sequential analysis" , Amer. Math. Soc.  (1973)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  E.B. Dynkin,  "Markov processes" , '''1–2''' , Springer  (1965)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  R.K. Getoor,  "Markov processes: Ray processes and right processes" , ''Lect. notes in math.'' , '''440''' , Springer  (1975)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  M.G. Shur,  "Functions harmonic for a Markov process"  ''Math. Notes'' , '''13'''  (1973)  pp. 355–359  ''Mat. Zametki'' , '''13''' :  4  (1973)  pp. 587–596</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  P.A. Meyer,  "Fonctionelles multiplicatives et additives de Markov"  ''Ann. Inst. Fourier'' , '''12'''  (1962)  pp. 125–230</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  P.A. Meyer,  "Brélot's axiomatic theory of the Dirichlet problem and Hunt's theory"  ''Ann. Inst. Fourier'' , '''13'''  (1963)  pp. 357–372</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Latest revision as of 19:38, 5 June 2020


for a Markov process

The analogue of a non-negative superharmonic function.

Suppose that in a measurable space $ ( E , {\mathcal B} ) $ a homogeneous Markov chain is given with single-step transition probabilities $ {\mathsf P} ( x , B ) $( $ x \in E $, $ B \in {\mathcal B} $). A measurable function $ f : E \rightarrow [ 0 , \infty ] $ relative to $ {\mathcal B} $ is said to be excessive for this chain if

$$ \int\limits _ { E } f ( y) {\mathsf P} ( x , d y ) \leq f ( x) $$

everywhere in $ E $. For an indecomposable chain with an at most countable set of states, among the excessive functions there exist non-constant ones if and only if at least one of the states is non-recurrent.

For a given homogeneous Markov process $ X = ( x _ {t} , \zeta , {\mathcal F} _ {t} , {\mathsf P} _ {x} ) $ in $ ( E , {\mathcal B} ) $ with transition function $ P ( t , x , B ) $, the definition of an excessive function is somewhat more complicated. A set $ B $ belongs to the $ \sigma $- algebra $ \overline {\mathcal B} \; $ if for any finite measure $ \mu $ on $ {\mathcal B} $ one can find sets $ B _ \mu ^ {1} $ and $ B _ \mu ^ {2} $ such that $ B _ \mu ^ {1} \subset B \subset B _ \mu ^ {2} $ and $ \mu ( B _ \mu ^ {2} \setminus B _ \mu ^ {1} ) = 0 $. A function $ f : E \rightarrow [ 0 , \infty ] $ is said to be excessive if it is $ \overline {\mathcal B} \; $- measurable and if for $ t \geq 0 $ everywhere in $ E $:

$$ P ^ {t} f ( x) = \int\limits f ( y) P ( t , x , d y ) \leq f ( x ) , $$

and

$$ f ( x) = \lim\limits _ {s \downarrow 0 } P ^ {s} f ( x) . $$

For the part of a Wiener process in a certain domain $ E \subset \mathbf R ^ {n} $( see Functional of a Markov process) the class of excessive functions is the same as that of superharmonic functions supplemented by $ f ( x) \equiv \infty $.

In the case of a standard process $ X $ in a locally compact separable space $ E $ the inequality

$$ M _ {x} f ( x _ \tau ) \leq f ( x ) , $$

for an excessive function $ f ( x) $, is satisfied throughout $ E $, where $ \tau $ is the Markov moment, $ M _ {x} $ is the mathematical expectation corresponding to the measure $ {\mathsf P} _ {x} $ and $ f ( x _ \tau ) = 0 $ for $ \tau \geq \zeta $. Another frequently used property of an excessive function is that $ {\mathsf P} _ {x} $- almost certainly the function $ f ( x _ {t} ) $ is right continuous on the interval $ [ 0 , \zeta ] $( see [3]).

An excessive function $ f ( x) < \infty $ is called harmonic if $ f ( x) \equiv M _ {x} f ( x _ \tau ) $, where $ \tau $ is the first exit time of $ X $ from $ K $, $ K \subset E $ being any given compact set. A potential is, by definition, any excessive function $ f ( x) < \infty $ for which

$$ \lim\limits _ {n \rightarrow \infty } M _ {x} f ( x _ {\tau _ {n} } ) = 0 $$

for any choice of Markov moments $ \tau _ {n} $, $ n \geq 1 $, such that $ \tau _ {n} \rightarrow \zeta $, as $ n \rightarrow \infty $. For the part of a Wiener process in a domain $ E \subset \mathbf R ^ {n} $ harmonic functions and potentials are, respectively, non-negative harmonic functions on $ E $ in the classical sense and Green potentials of Borel measures concentrated on $ E $.

An example of a potential is the potential $ M _ {x} \gamma _ \zeta $ of an additive functional $ \gamma _ {t} \geq 0 $ in $ X $, provided that $ M _ {x} \gamma _ \zeta < \infty $. An excessive function $ f ( x) < \infty $ is the potential of an additive functional if and only if

$$ \lim\limits _ {n \rightarrow \infty } M _ {x} f ( x _ {\tau _ {n} } ) = 0 , $$

where $ \tau _ {n} $ is the first entry time of the set $ \{ {x } : {f ( x) \geq n } \} $.

Within the framework of Brélot's axiomatic theory of harmonic spaces all non-negative superharmonic functions are excessive for some standard process.

References

[1a] G.A. Hunt, "Markov processes and potentials I" Illinois J. Math. , 1 : 1 (1957) pp. 44–93
[1b] G.A. Hunt, "Markov processes and potentials II" Illinois J. Math. , 1 : 3 (1957) pp. 316–369
[1c] G.A. Hunt, "Markov processes and potentials III" Illinois J. Math. , 2 : 2 (1958) pp. 151–213
[2] A.N. Shiryaev, "Statistical sequential analysis" , Amer. Math. Soc. (1973) (Translated from Russian)
[3] E.B. Dynkin, "Markov processes" , 1–2 , Springer (1965) (Translated from Russian)
[4] R.K. Getoor, "Markov processes: Ray processes and right processes" , Lect. notes in math. , 440 , Springer (1975)
[5] M.G. Shur, "Functions harmonic for a Markov process" Math. Notes , 13 (1973) pp. 355–359 Mat. Zametki , 13 : 4 (1973) pp. 587–596
[6] P.A. Meyer, "Fonctionelles multiplicatives et additives de Markov" Ann. Inst. Fourier , 12 (1962) pp. 125–230
[7] P.A. Meyer, "Brélot's axiomatic theory of the Dirichlet problem and Hunt's theory" Ann. Inst. Fourier , 13 (1963) pp. 357–372

Comments

The definition of an excessive function and its properties are due to G.A. Hunt . Another definition via resolvents is used in R.M. Blumenthal and R.K. Getoor [a1]. More recent references are [a2][a4]. For Brélot's theory of harmonic spaces, see [a5].

References

[a1] R.M. Blumenthal, R.K. Getoor, "Markov processes and potential theory" , Acad. Press (1968)
[a2] M. Fukushima, "Dirichlet forms and Markov processes" , North-Holland (1980)
[a3] K.L. Chung, "Lectures from Markov processes to Brownian motion" , Springer (1982)
[a4] J.L. Doob, "Classical potential theory and its probabilistic counterpart" , Springer (1984) pp. 390
[a5] M. Brélot, "Eléments de la théorie classique du potentiel" , Sorbonne Univ. Centre Doc. Univ. , Paris (1959)
How to Cite This Entry:
Excessive function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Excessive_function&oldid=15609
This article was adapted from an original article by M.G. Shur (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article