Namespaces
Variants
Actions

Difference between revisions of "Thermodynamic potential"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
t0925701.png
 +
$#A+1 = 37 n = 0
 +
$#C+1 = 37 : ~/encyclopedia/old_files/data/T092/T.0902570 Thermodynamic potential
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
Any one of the four functions defined on the set of macroscopic (thermodynamical) systems: the energy, the heat function (or enthalpy), the free Helmholtz energy, and the free Gibbs energy (sometimes called the thermodynamic potential in the restricted sense).
 
Any one of the four functions defined on the set of macroscopic (thermodynamical) systems: the energy, the heat function (or enthalpy), the free Helmholtz energy, and the free Gibbs energy (sometimes called the thermodynamic potential in the restricted sense).
  
To formally construct a thermodynamical state of a (one-component) thermodynamical system, one describes any one of the pairs of parameters <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092570/t0925701.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092570/t0925702.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092570/t0925703.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092570/t0925704.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092570/t0925705.png" /> is the specific entropy of the system, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092570/t0925706.png" /> is its absolute temperature, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092570/t0925707.png" /> is the pressure, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092570/t0925708.png" /> is the specific volume. To each of these pairs it is convenient to associate a thermodynamic potential: to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092570/t0925709.png" /> the energy <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092570/t09257010.png" />, to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092570/t09257011.png" /> the heat function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092570/t09257012.png" />, to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092570/t09257013.png" /> the free Helmholtz energy <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092570/t09257014.png" />, and, finally, to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092570/t09257015.png" /> the free Gibbs energy <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092570/t09257016.png" />.
+
To formally construct a thermodynamical state of a (one-component) thermodynamical system, one describes any one of the pairs of parameters $  ( s, v) $,
 +
$  ( s, p) $,
 +
$  ( T, v) $,  
 +
$  ( T, p) $,  
 +
where $  s $
 +
is the specific entropy of the system, $  T $
 +
is its absolute temperature, $  p $
 +
is the pressure, and $  v $
 +
is the specific volume. To each of these pairs it is convenient to associate a thermodynamic potential: to $  ( s, v) $
 +
the energy $  E = E ( s, v) $,  
 +
to $  ( s, p) $
 +
the heat function $  W = W ( s, p) $,  
 +
to $  ( T, v) $
 +
the free Helmholtz energy $  F = F ( T, v) $,  
 +
and, finally, to $  ( T, p) $
 +
the free Gibbs energy $  \Phi = \Phi ( T, p) $.
  
Here, if some pair of parameters is chosen to describe the system, then the other two parameters can be expressed as the partial derivatives of the corresponding thermodynamical potential (hence the name). The parameters <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092570/t09257017.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092570/t09257018.png" /> are conjugate in the sense that each can be expressed as a partial derivative with respect to the other; for example, choosing the pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092570/t09257019.png" /> with potential <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092570/t09257020.png" />, the parameters <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092570/t09257021.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092570/t09257022.png" /> are:
+
Here, if some pair of parameters is chosen to describe the system, then the other two parameters can be expressed as the partial derivatives of the corresponding thermodynamical potential (hence the name). The parameters $  s, T $
 +
and $  p, v $
 +
are conjugate in the sense that each can be expressed as a partial derivative with respect to the other; for example, choosing the pair $  ( s, v) $
 +
with potential $  E ( s, v) $,  
 +
the parameters $  T $
 +
and $  p $
 +
are:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092570/t09257023.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
=
 +
\frac{\partial  E }{\partial  s }
 +
,\ \
 +
p = -  
 +
\frac{\partial  E }{\partial  v }
 +
.
 +
$$
  
The transition from one pair of parameters with its potential to another pair of parameters with the corresponding potential is performed using the [[Legendre transform|Legendre transform]]. Thus, going from the pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092570/t09257024.png" /> to the pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092570/t09257025.png" />, the potential <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092570/t09257026.png" /> of this pair is
+
The transition from one pair of parameters with its potential to another pair of parameters with the corresponding potential is performed using the [[Legendre transform|Legendre transform]]. Thus, going from the pair $  ( s, v) $
 +
to the pair $  ( T, v) $,
 +
the potential $  F ( T, v) $
 +
of this pair is
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092570/t09257027.png" /></td> </tr></table>
+
$$
 +
F ( T, v)  = E ( s ( T), v) - s ( T) T,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092570/t09257028.png" /> is obtained from equation (1), that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092570/t09257029.png" /> agrees up to sign with the Legendre transform of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092570/t09257030.png" /> regarded as a function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092570/t09257031.png" />.
+
where $  s ( T) $
 +
is obtained from equation (1), that is, $  F ( T, v) $
 +
agrees up to sign with the Legendre transform of the function $  E ( s, v) $
 +
regarded as a function of $  s $.
  
 
For a meaningful thermodynamic construction using equilibrium Gibbs ensembles, the thermodynamic potentials can be expressed in terms of the thermodynamic limit of the logarithm of the statistical sum (and its derivatives) of some or other of the Gibbs ensembles, divided by volume. For example, the free Helmholtz energy is given by
 
For a meaningful thermodynamic construction using equilibrium Gibbs ensembles, the thermodynamic potentials can be expressed in terms of the thermodynamic limit of the logarithm of the statistical sum (and its derivatives) of some or other of the Gibbs ensembles, divided by volume. For example, the free Helmholtz energy is given by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092570/t09257032.png" /></td> </tr></table>
+
$$
 +
F ( T, v)  = \
 +
\lim\limits _ {\begin{array}{c}
 +
N \rightarrow \infty \\
 +
| \Lambda |/N \rightarrow \infty
 +
\end{array}
 +
} \
 +
{
 +
\frac{1}{| \Lambda | }
 +
}  \mathop{\rm ln} \
 +
Z ( T, N, \Lambda ),
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092570/t09257033.png" /> is the [[Statistical sum|statistical sum]] of a small canonical ensemble for an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092570/t09257034.png" />-particle system, enclosed in a domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092570/t09257035.png" /> (of volume <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092570/t09257036.png" />), at a fixed temperature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092570/t09257037.png" /> (cf. [[#References|[3]]]).
+
where $  Z ( T, N, \Lambda ) $
 +
is the [[Statistical sum|statistical sum]] of a small canonical ensemble for an $  N $-
 +
particle system, enclosed in a domain $  \Lambda $(
 +
of volume $  | \Lambda | $),  
 +
at a fixed temperature $  T $(
 +
cf. [[#References|[3]]]).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  L.D. Landau,  E.M. Lifshitz,  "Statistical physics" , ''A course of theoretical physics'' , '''5''' , Pergamon  (1969)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  I.M. Gel'fand,  S.V. Fomin,  "Calculus of variations" , Prentice-Hall  (1963)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  D. Ruelle,  "Statistical mechanics: rigorous results" , Benjamin  (1974)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  L.D. Landau,  E.M. Lifshitz,  "Statistical physics" , ''A course of theoretical physics'' , '''5''' , Pergamon  (1969)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  I.M. Gel'fand,  S.V. Fomin,  "Calculus of variations" , Prentice-Hall  (1963)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  D. Ruelle,  "Statistical mechanics: rigorous results" , Benjamin  (1974)</TD></TR></table>

Latest revision as of 08:25, 6 June 2020


Any one of the four functions defined on the set of macroscopic (thermodynamical) systems: the energy, the heat function (or enthalpy), the free Helmholtz energy, and the free Gibbs energy (sometimes called the thermodynamic potential in the restricted sense).

To formally construct a thermodynamical state of a (one-component) thermodynamical system, one describes any one of the pairs of parameters $ ( s, v) $, $ ( s, p) $, $ ( T, v) $, $ ( T, p) $, where $ s $ is the specific entropy of the system, $ T $ is its absolute temperature, $ p $ is the pressure, and $ v $ is the specific volume. To each of these pairs it is convenient to associate a thermodynamic potential: to $ ( s, v) $ the energy $ E = E ( s, v) $, to $ ( s, p) $ the heat function $ W = W ( s, p) $, to $ ( T, v) $ the free Helmholtz energy $ F = F ( T, v) $, and, finally, to $ ( T, p) $ the free Gibbs energy $ \Phi = \Phi ( T, p) $.

Here, if some pair of parameters is chosen to describe the system, then the other two parameters can be expressed as the partial derivatives of the corresponding thermodynamical potential (hence the name). The parameters $ s, T $ and $ p, v $ are conjugate in the sense that each can be expressed as a partial derivative with respect to the other; for example, choosing the pair $ ( s, v) $ with potential $ E ( s, v) $, the parameters $ T $ and $ p $ are:

$$ \tag{1 } T = \frac{\partial E }{\partial s } ,\ \ p = - \frac{\partial E }{\partial v } . $$

The transition from one pair of parameters with its potential to another pair of parameters with the corresponding potential is performed using the Legendre transform. Thus, going from the pair $ ( s, v) $ to the pair $ ( T, v) $, the potential $ F ( T, v) $ of this pair is

$$ F ( T, v) = E ( s ( T), v) - s ( T) T, $$

where $ s ( T) $ is obtained from equation (1), that is, $ F ( T, v) $ agrees up to sign with the Legendre transform of the function $ E ( s, v) $ regarded as a function of $ s $.

For a meaningful thermodynamic construction using equilibrium Gibbs ensembles, the thermodynamic potentials can be expressed in terms of the thermodynamic limit of the logarithm of the statistical sum (and its derivatives) of some or other of the Gibbs ensembles, divided by volume. For example, the free Helmholtz energy is given by

$$ F ( T, v) = \ \lim\limits _ {\begin{array}{c} N \rightarrow \infty \\ | \Lambda |/N \rightarrow \infty \end{array} } \ { \frac{1}{| \Lambda | } } \mathop{\rm ln} \ Z ( T, N, \Lambda ), $$

where $ Z ( T, N, \Lambda ) $ is the statistical sum of a small canonical ensemble for an $ N $- particle system, enclosed in a domain $ \Lambda $( of volume $ | \Lambda | $), at a fixed temperature $ T $( cf. [3]).

References

[1] L.D. Landau, E.M. Lifshitz, "Statistical physics" , A course of theoretical physics , 5 , Pergamon (1969) (Translated from Russian)
[2] I.M. Gel'fand, S.V. Fomin, "Calculus of variations" , Prentice-Hall (1963) (Translated from Russian)
[3] D. Ruelle, "Statistical mechanics: rigorous results" , Benjamin (1974)
How to Cite This Entry:
Thermodynamic potential. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Thermodynamic_potential&oldid=15465
This article was adapted from an original article by R.A. Minlos (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article