Difference between revisions of "Genetic algebra"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
(2 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | g0439701.png | ||
+ | $#A+1 = 110 n = 0 | ||
+ | $#C+1 = 110 : ~/encyclopedia/old_files/data/G043/G.0403970 Genetic algebra | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | Let $ A $ | |
+ | be a non-associative, commutative algebra of dimension $ n + 1 $ | ||
+ | over a field $ K $. | ||
+ | |||
+ | Let the field $ L $ | ||
+ | be an algebraic extension of $ K $, | ||
+ | and let $ A _ {L} $ | ||
+ | be the extension of $ A $ | ||
+ | over $ L $( | ||
+ | cf. also [[Extension of a field|Extension of a field]]). Let $ A _ {L} $ | ||
+ | admit a basis $ \{ c _ {0} , c _ {1} \dots c _ {n} \} $, | ||
+ | $ c _ {0} \in A $, | ||
+ | with [[structure constant]]s $ \lambda _ {ijk} $, | ||
+ | defined by | ||
+ | |||
+ | $$ | ||
+ | c _ {i} c _ {j} = \ | ||
+ | \sum _ {k = 0 } ^ { n } \lambda _ {ijk} c _ {k} ,\ \ | ||
+ | i, j = 0 \dots n, | ||
+ | $$ | ||
which have the following properties: | which have the following properties: | ||
− | < | + | $ \lambda _ {000} = 1 $, |
+ | |||
+ | $ \lambda _ {0jk} = 0 $ | ||
+ | for $ k < j $, | ||
+ | $ j = 1 \dots n $; | ||
+ | $ k = 0 \dots n $, | ||
− | + | $ \lambda _ {ijk} = 0 $ | |
+ | for $ k \leq \max \{ i, j \} $, | ||
+ | $ i, j = 1 \dots n $; | ||
+ | $ k = 0 \dots n $. | ||
− | + | Then $ A $ | |
+ | is called a genetic algebra and $ \{ c _ {0} \dots c _ {n} \} $ | ||
+ | is called a canonical basis of $ A $. | ||
+ | The multiplication constants $ \lambda _ {0ii} $, | ||
+ | $ i = 0 \dots n $, | ||
+ | are invariants of a genetic algebra; they are called the ''train roots'' of $ A $. | ||
− | + | An algebra $ A $ | |
+ | is called a [[baric algebra]] if there exists a non-trivial algebra homomorphism $ \omega : A \rightarrow K $; | ||
+ | $ \omega $ | ||
+ | is called a weight homomorphism or simply a weight. Every genetic algebra $ A $ | ||
+ | is baric with $ \omega : A \rightarrow K $ | ||
+ | defined by $ \omega ( c _ {0} ) = 1 $, | ||
+ | $ \omega ( c _ {i} ) = 0 $, | ||
+ | $ i = 1 \dots n $; | ||
+ | and $ \mathop{\rm ker} \omega $ | ||
+ | is an $ n $- | ||
+ | dimensional ideal of $ A $. | ||
− | + | Let $ T ( A) $ | |
+ | be the transformation algebra of the algebra $ A $, | ||
+ | i.e. the algebra generated by the (say) left transformations $ L _ {a} : A \rightarrow A $, | ||
+ | $ x \mapsto ax $, | ||
+ | $ a \in A $, | ||
+ | and the identity. | ||
− | + | A non-associative, commutative algebra $ A $ | |
+ | is a genetic algebra if and only if for every $ T \in T ( A) $, | ||
+ | $ T = f ( L _ {a _ {1} } \dots L _ {a _ {k} } ) $, | ||
+ | the coefficients of the characteristic polynomial are functions of $ \omega ( a _ {1} ) \dots \omega ( a _ {k} ) $ | ||
+ | only. | ||
− | + | Historically, genetic algebras were first defined by this property (R.D. Schafer [[#References|[a5]]]). H. Gonshor [[#References|[a3]]] proved the equivalence with the first definition above. P. Holgate [[#References|[a4]]] proved that in a baric algebra $ A $ | |
+ | the weight $ \omega $ | ||
+ | is uniquely determined if $ \mathop{\rm ker} \omega $ | ||
+ | is a nil ideal. | ||
− | + | Algebras in genetics originate from the work of I.M.H. Etherington [[#References|[a2]]], who put the Mendelian laws into an algebraic form. Consider an infinitely large, random mating population of diploid (or $ 2r $- | |
+ | ploid) individuals which differ genetically at one or several loci. Let $ a _ {0} \dots a _ {n} $ | ||
+ | be the genetically different gametes. The state of the population can be described by the vector $ ( \alpha _ {0} \dots \alpha _ {n} ) $ | ||
+ | of frequencies of gametes, | ||
− | + | $$ | |
+ | 0 \leq \alpha _ {i} \leq 1,\ \ | ||
+ | i = 0 \dots n; \ \ | ||
+ | \sum _ {i = 0 } ^ { n } | ||
+ | \alpha _ {i} = 1. | ||
+ | $$ | ||
− | + | By random union of gametes $ a _ {i} $ | |
+ | and $ a _ {j} $, | ||
+ | zygotes $ a _ {i} a _ {j} $ | ||
+ | are formed, $ i, j = 0 \dots n $. | ||
+ | In the absence of selection all zygotes have the same fertility. Let $ \gamma _ {ijk} $ | ||
+ | be the relative frequency of gametes $ a _ {k} $, | ||
+ | $ k = 0 \dots n $, | ||
+ | produced by a zygote $ a _ {i} a _ {j} $, | ||
+ | $ i, j = 0 \dots n $, | ||
− | + | $$ \tag{a1 } | |
+ | \left . \begin{array}{c} | ||
+ | 0 \leq \gamma _ {ijk} \leq 1,\ \ | ||
+ | i, j, k = 0 \dots n; | ||
+ | \\ | ||
− | + | \sum _ {k = 0 } ^ { n } | |
+ | \gamma _ {ijk} = 1,\ \ | ||
+ | i, j = 0 \dots n. | ||
+ | \end{array} | ||
+ | \right \} | ||
+ | $$ | ||
− | Let the segregation rates | + | Let the segregation rates $ \gamma _ {ijk} $ |
+ | be symmetric, i.e. | ||
− | + | $$ \tag{a2 } | |
+ | \gamma _ {ijk} = \gamma _ {jik} ,\ \ | ||
+ | i, j, k = 0 \dots n. | ||
+ | $$ | ||
− | Consider the elements | + | Consider the elements $ a _ {0} \dots a _ {n} $ |
+ | as abstract elements which are free over the field $ \mathbf R $. | ||
+ | In the vector space $ V = \{ {\sum _ {i = 0 } ^ {n} \alpha _ {i} a _ {i} } : {\alpha _ {i} \in \mathbf R , i = 0 \dots n } \} $ | ||
+ | a multiplication is defined by | ||
− | + | $$ | |
+ | a _ {i} a _ {j} = \ | ||
+ | \sum _ {k = 0 } ^ { n } | ||
+ | \gamma _ {ijk} a _ {k} ,\ \ | ||
+ | i, j = 0 \dots n, | ||
+ | $$ | ||
− | and its bilinear extension onto | + | and its bilinear extension onto $ V \times V $. |
+ | Thereby $ V $ | ||
+ | becomes a commutative algebra $ G $, | ||
+ | the gametic algebra. Actual populations correspond to elements $ a = \sum _ {i = 0 } ^ {n} \alpha _ {i} a _ {i} \in G $ | ||
+ | with $ 0 \leq \alpha _ {i} \leq 1 $, | ||
+ | $ i = 0 \dots n $, | ||
+ | and $ \sum _ {i = 0 } ^ {n} \alpha _ {i} = 1 $. | ||
+ | Random union of populations corresponds to multiplication of the corresponding elements in the algebra $ G $. | ||
+ | Under rather general assumptions (including mutation, crossing over, polyploidy) gametic algebras are genetic algebras. Examples can be found in [[#References|[a2]]] or [[#References|[a7]]]. | ||
− | The zygotic algebra | + | The zygotic algebra $ Z $ |
+ | is obtained from the gametic algebra $ G $ | ||
+ | by duplication, i.e. as the symmetric tensor product of $ G $ | ||
+ | with itself: | ||
− | + | $$ \tag{a3 } | |
+ | Z = G \otimes G/J, | ||
+ | $$ | ||
where | where | ||
− | + | $$ | |
+ | J : = \left \{ { | ||
+ | \sum _ {i \in I } | ||
+ | ( x _ {i} \otimes y _ {i} - y _ {i} \otimes x _ {i} ) } : { | ||
+ | x _ {i} , y _ {i} \in G,\ | ||
+ | i \in I,\ | ||
+ | | I | < \infty | ||
+ | } \right \} | ||
+ | . | ||
+ | $$ | ||
− | The zygotic algebra describes the evolution of a population of diploid ( | + | The zygotic algebra describes the evolution of a population of diploid ( $ 2r $- |
+ | ploid) individuals under random mating. | ||
− | A baric algebra | + | A baric algebra $ A $ |
+ | with weight $ \omega $ | ||
+ | is called a train algebra if the coefficients of the rank polynomial of all principal powers of $ x $ | ||
+ | depend only on $ \omega ( x) $, | ||
+ | i.e. if this polynomial has the form | ||
− | + | $$ \tag{a4 } | |
+ | x ^ {r} + | ||
+ | \beta _ {1} \omega ( x) | ||
+ | x ^ {r - 1 } + \dots + | ||
+ | \beta _ {r - 1 } | ||
+ | \omega ^ {r - 1 } ( x) | ||
+ | x = 0. | ||
+ | $$ | ||
− | A baric algebra | + | A baric algebra $ A $ |
+ | with weight $ \omega $ | ||
+ | is called a special train algebra if $ N = \mathop{\rm ker} \omega $ | ||
+ | is nilpotent and the principal powers $ N ^ {i} $, | ||
+ | $ i \in N $, | ||
+ | are ideals of $ A $, | ||
+ | cf. [[#References|[a2]]]. Etherington [[#References|[a2]]] proved that every special train algebra is a train algebra. Schafer [[#References|[a5]]] showed that every special train algebra is a genetic algebra and that every genetic algebra is a train algebra. Further characterizations of these algebras can be found in [[#References|[a7]]], Chapts. 3, 4. | ||
− | Let | + | Let $ A $ |
+ | be a baric algebra with weight $ \omega $. | ||
+ | If all elements $ x $ | ||
+ | of $ A $ | ||
+ | satisfy the identity | ||
− | + | $$ | |
+ | x ^ {2} x ^ {2} = \ | ||
+ | \omega ^ {2} ( x) x ^ {2} , | ||
+ | $$ | ||
− | then | + | then $ A $ |
+ | is called a [[Bernstein algebra]]. Every Bernstein algebra possesses an idempotent $ e $. | ||
+ | The decomposition with respect to this idempotent reads | ||
− | + | $$ | |
+ | A = E \oplus U \oplus V, | ||
+ | $$ | ||
where | where | ||
− | + | $$ | |
+ | E = e \cdot K,\ \ | ||
+ | \left . U = \mathop{\rm Im} L _ {e} \right | _ {N} ,\ \ | ||
+ | V = \mathop{\rm ker} L _ {e} . | ||
+ | $$ | ||
− | The integers | + | The integers $ p = \mathop{\rm dim} U $ |
+ | and $ q = \mathop{\rm dim} V $ | ||
+ | are invariants of $ A $, | ||
+ | the pair $ ( p + 1 , q) $ | ||
+ | is called the type of the Bernstein algebra $ A $, | ||
+ | cf. [[#References|[a7]]], Chapt. 9. In [[#References|[a6]]] necessary and sufficient conditions have been given for a Bernstein algebra to be a [[Jordan algebra|Jordan algebra]]. | ||
− | Bernstein algebras were introduced by S. Bernstein [[#References|[a1]]] as a generalization of the Hardy–Weinberg law, which states that a randomly mating population is in equilibrium after one generation. | + | Bernstein algebras were introduced by S. Bernstein [[#References|[a1]]] as a generalization of the [[Hardy–Weinberg law]], which states that a randomly mating population is in equilibrium after one generation. |
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Bernstein, "Principe de stationarité et généralisation de la loi de Mendel" ''C.R. Acad. Sci. Paris'' , '''177''' (1923) pp. 581–584</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> I.M.H. Etherington, "Genetic algebras" ''Proc. R. Soc. Edinburgh'' , '''59''' (1939) pp. 242–258</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> H. Gonshor, "Contributions to genetic algebras" ''Proc. Edinburgh Math. Soc. (2)'' , '''17''' (1971) pp. 289–298</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> P. Holgate, "Characterizations of genetic algebras" ''J. London Math. Soc. (2)'' , '''6''' (1972) pp. 169–174</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> R.D. Schafer, "Structure of genetic algebras" ''Amer. J. Math.'' , '''71''' (1949) pp. 121–135</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> S. Walcher, "Bernstein algebras which are Jordan algebras" ''Arch. Math.'' , '''50''' (1988) pp. 218–222</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> A. Wörz-Busekros, "Algebras in genetics" , ''Lect. notes in biomath.'' , '''36''' , Springer (1980)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Bernstein, "Principe de stationarité et généralisation de la loi de Mendel" ''C.R. Acad. Sci. Paris'' , '''177''' (1923) pp. 581–584</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> I.M.H. Etherington, "Genetic algebras" ''Proc. R. Soc. Edinburgh'' , '''59''' (1939) pp. 242–258</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> H. Gonshor, "Contributions to genetic algebras" ''Proc. Edinburgh Math. Soc. (2)'' , '''17''' (1971) pp. 289–298</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> P. Holgate, "Characterizations of genetic algebras" ''J. London Math. Soc. (2)'' , '''6''' (1972) pp. 169–174</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> R.D. Schafer, "Structure of genetic algebras" ''Amer. J. Math.'' , '''71''' (1949) pp. 121–135</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> S. Walcher, "Bernstein algebras which are Jordan algebras" ''Arch. Math.'' , '''50''' (1988) pp. 218–222</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> A. Wörz-Busekros, "Algebras in genetics" , ''Lect. notes in biomath.'' , '''36''' , Springer (1980)</TD></TR></table> |
Latest revision as of 19:41, 5 June 2020
Let $ A $
be a non-associative, commutative algebra of dimension $ n + 1 $
over a field $ K $.
Let the field $ L $ be an algebraic extension of $ K $, and let $ A _ {L} $ be the extension of $ A $ over $ L $( cf. also Extension of a field). Let $ A _ {L} $ admit a basis $ \{ c _ {0} , c _ {1} \dots c _ {n} \} $, $ c _ {0} \in A $, with structure constants $ \lambda _ {ijk} $, defined by
$$ c _ {i} c _ {j} = \ \sum _ {k = 0 } ^ { n } \lambda _ {ijk} c _ {k} ,\ \ i, j = 0 \dots n, $$
which have the following properties:
$ \lambda _ {000} = 1 $,
$ \lambda _ {0jk} = 0 $ for $ k < j $, $ j = 1 \dots n $; $ k = 0 \dots n $,
$ \lambda _ {ijk} = 0 $ for $ k \leq \max \{ i, j \} $, $ i, j = 1 \dots n $; $ k = 0 \dots n $.
Then $ A $ is called a genetic algebra and $ \{ c _ {0} \dots c _ {n} \} $ is called a canonical basis of $ A $. The multiplication constants $ \lambda _ {0ii} $, $ i = 0 \dots n $, are invariants of a genetic algebra; they are called the train roots of $ A $.
An algebra $ A $ is called a baric algebra if there exists a non-trivial algebra homomorphism $ \omega : A \rightarrow K $; $ \omega $ is called a weight homomorphism or simply a weight. Every genetic algebra $ A $ is baric with $ \omega : A \rightarrow K $ defined by $ \omega ( c _ {0} ) = 1 $, $ \omega ( c _ {i} ) = 0 $, $ i = 1 \dots n $; and $ \mathop{\rm ker} \omega $ is an $ n $- dimensional ideal of $ A $.
Let $ T ( A) $ be the transformation algebra of the algebra $ A $, i.e. the algebra generated by the (say) left transformations $ L _ {a} : A \rightarrow A $, $ x \mapsto ax $, $ a \in A $, and the identity.
A non-associative, commutative algebra $ A $ is a genetic algebra if and only if for every $ T \in T ( A) $, $ T = f ( L _ {a _ {1} } \dots L _ {a _ {k} } ) $, the coefficients of the characteristic polynomial are functions of $ \omega ( a _ {1} ) \dots \omega ( a _ {k} ) $ only.
Historically, genetic algebras were first defined by this property (R.D. Schafer [a5]). H. Gonshor [a3] proved the equivalence with the first definition above. P. Holgate [a4] proved that in a baric algebra $ A $ the weight $ \omega $ is uniquely determined if $ \mathop{\rm ker} \omega $ is a nil ideal.
Algebras in genetics originate from the work of I.M.H. Etherington [a2], who put the Mendelian laws into an algebraic form. Consider an infinitely large, random mating population of diploid (or $ 2r $- ploid) individuals which differ genetically at one or several loci. Let $ a _ {0} \dots a _ {n} $ be the genetically different gametes. The state of the population can be described by the vector $ ( \alpha _ {0} \dots \alpha _ {n} ) $ of frequencies of gametes,
$$ 0 \leq \alpha _ {i} \leq 1,\ \ i = 0 \dots n; \ \ \sum _ {i = 0 } ^ { n } \alpha _ {i} = 1. $$
By random union of gametes $ a _ {i} $ and $ a _ {j} $, zygotes $ a _ {i} a _ {j} $ are formed, $ i, j = 0 \dots n $. In the absence of selection all zygotes have the same fertility. Let $ \gamma _ {ijk} $ be the relative frequency of gametes $ a _ {k} $, $ k = 0 \dots n $, produced by a zygote $ a _ {i} a _ {j} $, $ i, j = 0 \dots n $,
$$ \tag{a1 } \left . \begin{array}{c} 0 \leq \gamma _ {ijk} \leq 1,\ \ i, j, k = 0 \dots n; \\ \sum _ {k = 0 } ^ { n } \gamma _ {ijk} = 1,\ \ i, j = 0 \dots n. \end{array} \right \} $$
Let the segregation rates $ \gamma _ {ijk} $ be symmetric, i.e.
$$ \tag{a2 } \gamma _ {ijk} = \gamma _ {jik} ,\ \ i, j, k = 0 \dots n. $$
Consider the elements $ a _ {0} \dots a _ {n} $ as abstract elements which are free over the field $ \mathbf R $. In the vector space $ V = \{ {\sum _ {i = 0 } ^ {n} \alpha _ {i} a _ {i} } : {\alpha _ {i} \in \mathbf R , i = 0 \dots n } \} $ a multiplication is defined by
$$ a _ {i} a _ {j} = \ \sum _ {k = 0 } ^ { n } \gamma _ {ijk} a _ {k} ,\ \ i, j = 0 \dots n, $$
and its bilinear extension onto $ V \times V $. Thereby $ V $ becomes a commutative algebra $ G $, the gametic algebra. Actual populations correspond to elements $ a = \sum _ {i = 0 } ^ {n} \alpha _ {i} a _ {i} \in G $ with $ 0 \leq \alpha _ {i} \leq 1 $, $ i = 0 \dots n $, and $ \sum _ {i = 0 } ^ {n} \alpha _ {i} = 1 $. Random union of populations corresponds to multiplication of the corresponding elements in the algebra $ G $. Under rather general assumptions (including mutation, crossing over, polyploidy) gametic algebras are genetic algebras. Examples can be found in [a2] or [a7].
The zygotic algebra $ Z $ is obtained from the gametic algebra $ G $ by duplication, i.e. as the symmetric tensor product of $ G $ with itself:
$$ \tag{a3 } Z = G \otimes G/J, $$
where
$$ J : = \left \{ { \sum _ {i \in I } ( x _ {i} \otimes y _ {i} - y _ {i} \otimes x _ {i} ) } : { x _ {i} , y _ {i} \in G,\ i \in I,\ | I | < \infty } \right \} . $$
The zygotic algebra describes the evolution of a population of diploid ( $ 2r $- ploid) individuals under random mating.
A baric algebra $ A $ with weight $ \omega $ is called a train algebra if the coefficients of the rank polynomial of all principal powers of $ x $ depend only on $ \omega ( x) $, i.e. if this polynomial has the form
$$ \tag{a4 } x ^ {r} + \beta _ {1} \omega ( x) x ^ {r - 1 } + \dots + \beta _ {r - 1 } \omega ^ {r - 1 } ( x) x = 0. $$
A baric algebra $ A $ with weight $ \omega $ is called a special train algebra if $ N = \mathop{\rm ker} \omega $ is nilpotent and the principal powers $ N ^ {i} $, $ i \in N $, are ideals of $ A $, cf. [a2]. Etherington [a2] proved that every special train algebra is a train algebra. Schafer [a5] showed that every special train algebra is a genetic algebra and that every genetic algebra is a train algebra. Further characterizations of these algebras can be found in [a7], Chapts. 3, 4.
Let $ A $ be a baric algebra with weight $ \omega $. If all elements $ x $ of $ A $ satisfy the identity
$$ x ^ {2} x ^ {2} = \ \omega ^ {2} ( x) x ^ {2} , $$
then $ A $ is called a Bernstein algebra. Every Bernstein algebra possesses an idempotent $ e $. The decomposition with respect to this idempotent reads
$$ A = E \oplus U \oplus V, $$
where
$$ E = e \cdot K,\ \ \left . U = \mathop{\rm Im} L _ {e} \right | _ {N} ,\ \ V = \mathop{\rm ker} L _ {e} . $$
The integers $ p = \mathop{\rm dim} U $ and $ q = \mathop{\rm dim} V $ are invariants of $ A $, the pair $ ( p + 1 , q) $ is called the type of the Bernstein algebra $ A $, cf. [a7], Chapt. 9. In [a6] necessary and sufficient conditions have been given for a Bernstein algebra to be a Jordan algebra.
Bernstein algebras were introduced by S. Bernstein [a1] as a generalization of the Hardy–Weinberg law, which states that a randomly mating population is in equilibrium after one generation.
References
[a1] | S. Bernstein, "Principe de stationarité et généralisation de la loi de Mendel" C.R. Acad. Sci. Paris , 177 (1923) pp. 581–584 |
[a2] | I.M.H. Etherington, "Genetic algebras" Proc. R. Soc. Edinburgh , 59 (1939) pp. 242–258 |
[a3] | H. Gonshor, "Contributions to genetic algebras" Proc. Edinburgh Math. Soc. (2) , 17 (1971) pp. 289–298 |
[a4] | P. Holgate, "Characterizations of genetic algebras" J. London Math. Soc. (2) , 6 (1972) pp. 169–174 |
[a5] | R.D. Schafer, "Structure of genetic algebras" Amer. J. Math. , 71 (1949) pp. 121–135 |
[a6] | S. Walcher, "Bernstein algebras which are Jordan algebras" Arch. Math. , 50 (1988) pp. 218–222 |
[a7] | A. Wörz-Busekros, "Algebras in genetics" , Lect. notes in biomath. , 36 , Springer (1980) |
Genetic algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Genetic_algebra&oldid=15189