Difference between revisions of "Laplace-Stieltjes transform"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | l1100701.png | ||
+ | $#A+1 = 17 n = 0 | ||
+ | $#C+1 = 17 : ~/encyclopedia/old_files/data/L110/L.1100070 Laplace\ANDStieltjes transform | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
+ | |||
+ | Let $ G ( t ) $ | ||
+ | be a [[Function of bounded variation|function of bounded variation]] on $ 0 \leq t \leq R $, | ||
+ | for all positive $ R $. | ||
+ | The [[Integral|integral]] | ||
+ | |||
+ | $$ | ||
+ | f ( s ) = \int\limits _ { 0 } ^ \infty {e ^ {- st } } {dG ( t ) } = {\lim\limits } _ {R \rightarrow \infty } \int\limits _ { 0 } ^ { R } {e ^ {- st } } {dG ( t ) } | ||
+ | $$ | ||
is known as a (formal) Laplace–Stieltjes integral. | is known as a (formal) Laplace–Stieltjes integral. | ||
− | If the integral converges for some complex number | + | If the integral converges for some complex number $ s _ {0} $, |
+ | then it converges for all $ s $ | ||
+ | with $ { \mathop{\rm Re} } ( s ) > { \mathop{\rm Re} } ( s _ {0} ) $, | ||
+ | and the function $ f ( s ) $ | ||
+ | is then the Laplace–Stieltjes transform of $ G $. | ||
+ | If $ G $ | ||
+ | is of the form $ G ( t ) = \int _ {0} ^ {t} {g ( t ) } {dt } $ | ||
+ | for a function $ g $ | ||
+ | on $ [ 0,t ] $ | ||
+ | that is Lebesgue integrable for all $ t $( | ||
+ | see [[Lebesgue integral|Lebesgue integral]]), then the Laplace–Stieltjes transform becomes the [[Laplace transform|Laplace transform]] $ f ( s ) = \int _ {0} ^ \infty {e ^ {- st } g ( t ) } {dt } $ | ||
+ | of $ g $. | ||
− | There is also a corresponding two-sided Laplace–Stieltjes transform (or bilateral Laplace–Stieltjes transform) for suitable functions | + | There is also a corresponding two-sided Laplace–Stieltjes transform (or bilateral Laplace–Stieltjes transform) for suitable functions $ G $. |
See [[Laplace transform|Laplace transform]] for additional references. | See [[Laplace transform|Laplace transform]] for additional references. |
Latest revision as of 22:15, 5 June 2020
Let $ G ( t ) $
be a function of bounded variation on $ 0 \leq t \leq R $,
for all positive $ R $.
The integral
$$ f ( s ) = \int\limits _ { 0 } ^ \infty {e ^ {- st } } {dG ( t ) } = {\lim\limits } _ {R \rightarrow \infty } \int\limits _ { 0 } ^ { R } {e ^ {- st } } {dG ( t ) } $$
is known as a (formal) Laplace–Stieltjes integral.
If the integral converges for some complex number $ s _ {0} $, then it converges for all $ s $ with $ { \mathop{\rm Re} } ( s ) > { \mathop{\rm Re} } ( s _ {0} ) $, and the function $ f ( s ) $ is then the Laplace–Stieltjes transform of $ G $. If $ G $ is of the form $ G ( t ) = \int _ {0} ^ {t} {g ( t ) } {dt } $ for a function $ g $ on $ [ 0,t ] $ that is Lebesgue integrable for all $ t $( see Lebesgue integral), then the Laplace–Stieltjes transform becomes the Laplace transform $ f ( s ) = \int _ {0} ^ \infty {e ^ {- st } g ( t ) } {dt } $ of $ g $.
There is also a corresponding two-sided Laplace–Stieltjes transform (or bilateral Laplace–Stieltjes transform) for suitable functions $ G $.
See Laplace transform for additional references.
References
[a1] | D.V. Widder, "An introduction to transform theory" , Acad. Press (1971) |
Laplace-Stieltjes transform. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Laplace-Stieltjes_transform&oldid=15100