Namespaces
Variants
Actions

Difference between revisions of "Vinogradov estimates"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (fixing superscript)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 +
<!--
 +
v0966501.png
 +
$#A+1 = 35 n = 0
 +
$#C+1 = 35 : ~/encyclopedia/old_files/data/V096/V.0906650 Vinogradov estimates
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
The name of a number of theorems of I.M. Vinogradov. The following ones are the best known.
 
The name of a number of theorems of I.M. Vinogradov. The following ones are the best known.
  
1) Vinogradov's estimate for character sums (cf. [[Dirichlet character|Dirichlet character]]). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096650/v0966501.png" /> is a non-principal character mod <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096650/v0966502.png" />, then if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096650/v0966503.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096650/v0966504.png" />,
+
1) Vinogradov's estimate for character sums (cf. [[Dirichlet character|Dirichlet character]]). If $  \chi $
 +
is a non-principal character mod $  D $,  
 +
then if $  N > 0 $,  
 +
$  M \geq  1 $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096650/v0966505.png" /></td> </tr></table>
+
$$
 +
\left | \sum _ {n = N + 1 } ^ { {n }  + M }
 +
\chi ( n) \right |  \leq  \sqrt D  \mathop{\rm log}  D.
 +
$$
  
2) Vinogradov's estimate for Weyl sums (cf. [[Weyl sum|Weyl sum]]). Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096650/v0966506.png" /> be a constant and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096650/v0966507.png" />. Furthermore, let the points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096650/v0966508.png" />-dimensional space be subdivided into two classes — class 1 and class 2. A point in class 1 is a point
+
2) Vinogradov's estimate for Weyl sums (cf. [[Weyl sum|Weyl sum]]). Let $  n \geq  12 $
 +
be a constant and let $  \nu = 1/n $.  
 +
Furthermore, let the points of $  n $-dimensional space be subdivided into two classes — class 1 and class 2. A point in class 1 is a point
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096650/v0966509.png" /></td> </tr></table>
+
$$
 +
\left (
 +
\frac{a _ {n} }{q _ {n} }
 +
+
 +
z _ {n} \dots
 +
\frac{a _ {1} }{q _ {1} }
 +
+ z _ {1} \right )
 +
$$
  
where the first terms are rational irreducible fractions with positive denumerators, with lowest common multiple <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096650/v09665010.png" /> which is not larger than <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096650/v09665011.png" />, while the second term satisfies the condition
+
where the first terms are rational irreducible fractions with positive denumerators, with lowest common multiple $  Q $
 +
which is not larger than $  p  ^  \nu  $,  
 +
while the second term satisfies the condition
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096650/v09665012.png" /></td> </tr></table>
+
$$
 +
| z _ {s} |  \leq  p ^ {- s + \nu } .
 +
$$
  
 
A point in class 2 is a point not belonging to class 1. Then, putting
 
A point in class 2 is a point not belonging to class 1. Then, putting
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096650/v09665013.png" /></td> </tr></table>
+
$$
 +
\rho  = \
 +
{
 +
\frac{1}{8 n  ^ {2} (  \mathop{\rm log}  n + 0.5  \mathop{\rm log}  \mathop{\rm log}  n + 1.3) }
 +
} ,
 +
$$
  
 
for points in class 2,
 
for points in class 2,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096650/v09665014.png" /></td> </tr></table>
+
$$
 +
| T _ {m} |  = \
 +
\left | \sum _ {1 \leq  x \leq  P }
 +
e ^ {2 \pi i m ( \alpha _ {n} x  ^ {n} + \dots + \alpha _ {1} x) }
 +
\right |  \ll  P ^ {1- \rho }
 +
$$
  
if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096650/v09665015.png" />. If, on the other hand, one puts
+
if $  m \leq  P ^ {2 \rho } $.  
 +
If, on the other hand, one puts
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096650/v09665016.png" /></td> </tr></table>
+
$$
 +
\delta _ {s}  = z _ {s} p  ^ {s} ,\ \
 +
\delta _ {0= \max ( | \delta _ {n} | \dots | \delta _ {1} | ),
 +
$$
  
then, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096650/v09665017.png" />, for points of class 1,
+
then, if $  m \leq  P ^ {4 \nu  ^ {2} } $,  
 +
for points of class 1,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096650/v09665018.png" /></td> </tr></table>
+
$$
 +
| T _ {m} |  \ll  P ( m, Q)  ^  \nu  Q ^ {- \nu + \epsilon }
 +
$$
  
 
or even
 
or even
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096650/v09665019.png" /></td> </tr></table>
+
$$
 +
| T _ {m} |  \ll  PQ ^ {- \nu + \epsilon } \delta _ {0} ^ {- \nu }
 +
\  \textrm{ if }  \delta _ {0} \geq  1.
 +
$$
  
3) Vinogradov's estimates for trigonometric sums with prime numbers. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096650/v09665020.png" />. Also, let the points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096650/v09665021.png" />-dimensional space be subdivided into classes, in accordance with the notation of theorem 2), as follows.
+
3) Vinogradov's estimates for trigonometric sums with prime numbers. Let $  \epsilon \leq  0.001 $.  
 +
Also, let the points of $  n $-dimensional space be subdivided into classes, in accordance with the notation of theorem 2), as follows.
  
 
Class 1a comprises those points satisfying the condition
 
Class 1a comprises those points satisfying the condition
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096650/v09665022.png" /></td> </tr></table>
+
$$
 +
Q  \leq  e  ^ {u} ^ \epsilon ,\ \
 +
\delta _ {0}  \leq  e  ^ {u} ^ \epsilon ,\ \
 +
\textrm{ where }  u = \mathop{\rm log}  P.
 +
$$
  
 
Class 1b comprises those points not in class 1a and satisfying the condition
 
Class 1b comprises those points not in class 1a and satisfying the condition
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096650/v09665023.png" /></td> </tr></table>
+
$$
 +
Q  \leq  P ^ {0.2 \nu } ,\ \
 +
\delta  \leq  P  ^  \nu  .
 +
$$
  
 
Finally, all other points belong to class 2.
 
Finally, all other points belong to class 2.
Line 47: Line 106:
 
For points in class 1a one sets
 
For points in class 1a one sets
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096650/v09665024.png" /></td> </tr></table>
+
$$
 +
\Delta  = u ^ {9 \epsilon }
 +
Q ^ {- 0.5 \nu + \epsilon  ^  \prime  } ,\ \
 +
\mu  = ( m, Q) ^ {0.5 \nu } ,
 +
$$
  
 
or even
 
or even
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096650/v09665025.png" /></td> </tr></table>
+
$$
 +
\Delta  = u ^ {9 \epsilon }
 +
\delta _ {0} ^ {- 0.5 \nu } ,\ \
 +
\mu  = m ^ {- 0.5 \nu } \ \
 +
\textrm{ if }  \delta _ {0} \geq  1.
 +
$$
  
For points in class 1b, setting <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096650/v09665026.png" />, one defines
+
For points in class 1b, setting $  \epsilon = 2 \epsilon  ^  \prime  $,  
 +
one defines
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096650/v09665027.png" /></td> </tr></table>
+
$$
 +
\Delta  = Q ^ {- 0.5 + \epsilon _ {3} } ,\ \
 +
\mu  = ( m, Q) ^ {0.5 \nu } \ \
 +
\textrm{ if }  Q > e ^ {u  ^  \epsilon  } ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096650/v09665028.png" /></td> </tr></table>
+
$$
 +
\Delta  = Q ^ {- 0.5 \nu + \epsilon _ {3} } \delta _ {0} ^ {- 0.5 \nu + \epsilon _ {3} } ,\  \mu  =  1 \  \textrm{ if }  \delta _ {0} > e ^ {u  ^  \epsilon  }
 +
$$
  
(if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096650/v09665029.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096650/v09665030.png" />, any of the above pairs of values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096650/v09665031.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096650/v09665032.png" /> may be taken). Finally, one sets
+
(if $  Q > e ^ {u  ^  \epsilon  } $,  
 +
$  \delta _ {0} > e ^ {u  ^  \epsilon  } $,  
 +
any of the above pairs of values of $  \Delta $
 +
and $  \mu $
 +
may be taken). Finally, one sets
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096650/v09665033.png" /></td> </tr></table>
+
$$
 +
\Delta  = P ^ {- \rho _ {1} } ,\ \
 +
\rho _ {1}  = \
 +
{
 +
\frac{1}{17 n  ^ {2} ( 2  \mathop{\rm log}  n +  \mathop{\rm log}  \mathop{\rm log}  n + 2.9) }
 +
} ,\ \
 +
\mu  = 1
 +
$$
  
 
for points in class 2. Then
 
for points in class 2. Then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096650/v09665034.png" /></td> </tr></table>
+
$$
 +
\left | \sum _ {p \leq  P }
 +
e ^ {2 \pi i m ( \alpha _ {n} p  ^ {n} + \dots + \alpha _ {1} p) }
 +
\right |  \ll  \begin{array}{c}
 +
P \\
 +
u
 +
\end{array}
 +
\Delta \mu
 +
$$
  
if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096650/v09665035.png" />.
+
if $  m \leq  \Delta  ^ {- 2} $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  I.M. Vinogradov,  "The method of trigonometric sums in the theory of numbers" , Interscience  (1954)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  L.-K. Hua,  "Abschätzungen von Exponentialsummen und ihre Anwendung in der Zahlentheorie" , ''Enzyklopaedie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen'' , '''1''' :  2  (1959)  (Heft 13, Teil 1)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  I.M. Vinogradov,  "The method of trigonometric sums in the theory of numbers" , Interscience  (1954)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  L.-K. Hua,  "Abschätzungen von Exponentialsummen und ihre Anwendung in der Zahlentheorie" , ''Enzyklopaedie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen'' , '''1''' :  2  (1959)  (Heft 13, Teil 1)</TD></TR></table>

Latest revision as of 13:30, 14 May 2022


The name of a number of theorems of I.M. Vinogradov. The following ones are the best known.

1) Vinogradov's estimate for character sums (cf. Dirichlet character). If $ \chi $ is a non-principal character mod $ D $, then if $ N > 0 $, $ M \geq 1 $,

$$ \left | \sum _ {n = N + 1 } ^ { {n } + M } \chi ( n) \right | \leq \sqrt D \mathop{\rm log} D. $$

2) Vinogradov's estimate for Weyl sums (cf. Weyl sum). Let $ n \geq 12 $ be a constant and let $ \nu = 1/n $. Furthermore, let the points of $ n $-dimensional space be subdivided into two classes — class 1 and class 2. A point in class 1 is a point

$$ \left ( \frac{a _ {n} }{q _ {n} } + z _ {n} \dots \frac{a _ {1} }{q _ {1} } + z _ {1} \right ) $$

where the first terms are rational irreducible fractions with positive denumerators, with lowest common multiple $ Q $ which is not larger than $ p ^ \nu $, while the second term satisfies the condition

$$ | z _ {s} | \leq p ^ {- s + \nu } . $$

A point in class 2 is a point not belonging to class 1. Then, putting

$$ \rho = \ { \frac{1}{8 n ^ {2} ( \mathop{\rm log} n + 0.5 \mathop{\rm log} \mathop{\rm log} n + 1.3) } } , $$

for points in class 2,

$$ | T _ {m} | = \ \left | \sum _ {1 \leq x \leq P } e ^ {2 \pi i m ( \alpha _ {n} x ^ {n} + \dots + \alpha _ {1} x) } \right | \ll P ^ {1- \rho } $$

if $ m \leq P ^ {2 \rho } $. If, on the other hand, one puts

$$ \delta _ {s} = z _ {s} p ^ {s} ,\ \ \delta _ {0} = \max ( | \delta _ {n} | \dots | \delta _ {1} | ), $$

then, if $ m \leq P ^ {4 \nu ^ {2} } $, for points of class 1,

$$ | T _ {m} | \ll P ( m, Q) ^ \nu Q ^ {- \nu + \epsilon } $$

or even

$$ | T _ {m} | \ll PQ ^ {- \nu + \epsilon } \delta _ {0} ^ {- \nu } \ \textrm{ if } \delta _ {0} \geq 1. $$

3) Vinogradov's estimates for trigonometric sums with prime numbers. Let $ \epsilon \leq 0.001 $. Also, let the points of $ n $-dimensional space be subdivided into classes, in accordance with the notation of theorem 2), as follows.

Class 1a comprises those points satisfying the condition

$$ Q \leq e ^ {u} ^ \epsilon ,\ \ \delta _ {0} \leq e ^ {u} ^ \epsilon ,\ \ \textrm{ where } u = \mathop{\rm log} P. $$

Class 1b comprises those points not in class 1a and satisfying the condition

$$ Q \leq P ^ {0.2 \nu } ,\ \ \delta \leq P ^ \nu . $$

Finally, all other points belong to class 2.

For points in class 1a one sets

$$ \Delta = u ^ {9 \epsilon } Q ^ {- 0.5 \nu + \epsilon ^ \prime } ,\ \ \mu = ( m, Q) ^ {0.5 \nu } , $$

or even

$$ \Delta = u ^ {9 \epsilon } \delta _ {0} ^ {- 0.5 \nu } ,\ \ \mu = m ^ {- 0.5 \nu } \ \ \textrm{ if } \delta _ {0} \geq 1. $$

For points in class 1b, setting $ \epsilon = 2 \epsilon ^ \prime $, one defines

$$ \Delta = Q ^ {- 0.5 + \epsilon _ {3} } ,\ \ \mu = ( m, Q) ^ {0.5 \nu } \ \ \textrm{ if } Q > e ^ {u ^ \epsilon } , $$

$$ \Delta = Q ^ {- 0.5 \nu + \epsilon _ {3} } \delta _ {0} ^ {- 0.5 \nu + \epsilon _ {3} } ,\ \mu = 1 \ \textrm{ if } \delta _ {0} > e ^ {u ^ \epsilon } $$

(if $ Q > e ^ {u ^ \epsilon } $, $ \delta _ {0} > e ^ {u ^ \epsilon } $, any of the above pairs of values of $ \Delta $ and $ \mu $ may be taken). Finally, one sets

$$ \Delta = P ^ {- \rho _ {1} } ,\ \ \rho _ {1} = \ { \frac{1}{17 n ^ {2} ( 2 \mathop{\rm log} n + \mathop{\rm log} \mathop{\rm log} n + 2.9) } } ,\ \ \mu = 1 $$

for points in class 2. Then

$$ \left | \sum _ {p \leq P } e ^ {2 \pi i m ( \alpha _ {n} p ^ {n} + \dots + \alpha _ {1} p) } \right | \ll \begin{array}{c} P \\ u \end{array} \Delta \mu $$

if $ m \leq \Delta ^ {- 2} $.

References

[1] I.M. Vinogradov, "The method of trigonometric sums in the theory of numbers" , Interscience (1954) (Translated from Russian)
[2] L.-K. Hua, "Abschätzungen von Exponentialsummen und ihre Anwendung in der Zahlentheorie" , Enzyklopaedie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen , 1 : 2 (1959) (Heft 13, Teil 1)
How to Cite This Entry:
Vinogradov estimates. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Vinogradov_estimates&oldid=14934
This article was adapted from an original article by A.A. Karatsuba (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article