Namespaces
Variants
Actions

Difference between revisions of "Reciprocity laws"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
r0800901.png
 +
$#A+1 = 64 n = 0
 +
$#C+1 = 64 : ~/encyclopedia/old_files/data/R080/R.0800090 Reciprocity laws
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
A number of statements expressing relations between power-residue symbols or norm-residue symbols (cf. [[Power residue|Power residue]]; [[Norm-residue symbol|Norm-residue symbol]]).
 
A number of statements expressing relations between power-residue symbols or norm-residue symbols (cf. [[Power residue|Power residue]]; [[Norm-residue symbol|Norm-residue symbol]]).
  
The simplest manifestation of reciprocity laws is the following fact, which was already known to P. Fermat. The only prime divisors of the numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r0800901.png" /> are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r0800902.png" /> and primes which are terms of the arithmetical series <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r0800903.png" />. In other words, the identity
+
The simplest manifestation of reciprocity laws is the following fact, which was already known to P. Fermat. The only prime divisors of the numbers $  x  ^ {2} + 1 $
 +
are $  2 $
 +
and primes which are terms of the arithmetical series $  1 + 4k $.  
 +
In other words, the identity
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r0800904.png" /></td> </tr></table>
+
$$
 +
x  ^ {2} + 1  \equiv  0 (  \mathop{\rm mod}  p) ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r0800905.png" /> is a prime, is solvable if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r0800906.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r0800907.png" />. This assertion may be expressed with the aid of the quadratic-residue symbol ([[Legendre symbol|Legendre symbol]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r0800908.png" /> as follows:
+
where $  p > 2 $
 +
is a prime, is solvable if and only if $  p \equiv 1 $
 +
$  (  \mathop{\rm mod}  4) $.  
 +
This assertion may be expressed with the aid of the quadratic-residue symbol ([[Legendre symbol|Legendre symbol]]) $  \left (
 +
\frac{a}{p}
 +
\right ) $
 +
as follows:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r0800909.png" /></td> </tr></table>
+
$$
 +
\left ( -
 +
\frac{1}{p}
 +
\right )  = (- 1) ^ {( p- 1) / {2 } } .
 +
$$
  
 
In the more general case, the problem of solvability of the congruence
 
In the more general case, the problem of solvability of the congruence
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009010.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
$$ \tag{* }
 +
x  ^ {2}  \equiv  a  ( \mathop{\rm mod}  p)
 +
$$
  
 
is solved by the [[Gauss reciprocity law|Gauss reciprocity law]]:
 
is solved by the [[Gauss reciprocity law|Gauss reciprocity law]]:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009011.png" /></td> </tr></table>
+
$$
 +
\left ( {
 +
\frac{p}{q}
 +
} \right ) \left ( {
 +
\frac{q}{p}
 +
} \right )  = \
 +
(- 1) ^ {( p- 1) / 2 \cdot ( q- 1) / 2 } ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009012.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009013.png" /> are different odd primes, and by the following two complements:
+
where $  p $
 +
and $  q $
 +
are different odd primes, and by the following two complements:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009014.png" /></td> </tr></table>
+
$$
 +
\left ( {-
 +
\frac{1}{p}
 +
} \right )  = \
 +
(- 1) ^ {( p- 2) / {2 } } \ \
 +
\textrm{ and } \  \left ( {
 +
\frac{2}{p}
 +
} \right )  = \
 +
(- 1) ^ {( p  ^ {2} - 1) / {8 } } .
 +
$$
  
These relations for the Legendre symbol show that the prime numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009015.png" /> for which (*) is solvable for a given non-square <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009016.png" /> are contained in exactly one-half of the residue classes modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009017.png" />.
+
These relations for the Legendre symbol show that the prime numbers $  p $
 +
for which (*) is solvable for a given non-square $  a $
 +
are contained in exactly one-half of the residue classes modulo $  4  | a | $.
  
C.F. Gauss recognized the great importance of this reciprocity law and gave several proofs of it, based on completely different concepts [[#References|[1]]]. It follows from Gauss' reciprocity law and from its further generalization (the reciprocity law for the [[Jacobi symbol|Jacobi symbol]]) that, in particular, the decomposition of a prime number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009018.png" /> in a quadratic extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009019.png" /> of the field of rational numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009020.png" /> (cf. [[Quadratic field|Quadratic field]]) is determined by the residue class of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009021.png" /> modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009022.png" />.
+
C.F. Gauss recognized the great importance of this reciprocity law and gave several proofs of it, based on completely different concepts [[#References|[1]]]. It follows from Gauss' reciprocity law and from its further generalization (the reciprocity law for the [[Jacobi symbol|Jacobi symbol]]) that, in particular, the decomposition of a prime number $  p $
 +
in a quadratic extension $  \mathbf Q ( \sqrt d ) $
 +
of the field of rational numbers $  \mathbf Q $(
 +
cf. [[Quadratic field|Quadratic field]]) is determined by the residue class of $  p $
 +
modulo $  4  | d | $.
  
 
Gauss' reciprocity law has been generalized to congruences of the form
 
Gauss' reciprocity law has been generalized to congruences of the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009023.png" /></td> </tr></table>
+
$$
 +
x  ^ {n}  \equiv  a  (  \mathop{\rm mod}  p),\ \
 +
n > 2.
 +
$$
  
However, this involves a transition from the arithmetic of the rational integers to the arithmetic of the integers of an extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009024.png" /> of finite degree of the field of rational numbers. Also, in generalizing the reciprocity law to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009025.png" />-th power residues, the extension must be assumed to contain a primitive <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009026.png" />-th root of unity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009027.png" />. Under this assumption, prime divisors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009028.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009029.png" /> which are not divisors of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009030.png" /> satisfy the congruence
+
However, this involves a transition from the arithmetic of the rational integers to the arithmetic of the integers of an extension $  K $
 +
of finite degree of the field of rational numbers. Also, in generalizing the reciprocity law to $  n $-
 +
th power residues, the extension must be assumed to contain a primitive $  n $-
 +
th root of unity $  \zeta $.  
 +
Under this assumption, prime divisors $  \mathfrak P $
 +
of $  K $
 +
which are not divisors of $  n $
 +
satisfy the congruence
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009031.png" /></td> </tr></table>
+
$$
 +
N _ {\mathfrak P}  \equiv  1  (  \mathop{\rm mod}  n),
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009032.png" /> is the norm of the divisor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009033.png" />, equal to the number of residue classes of the maximal order of this field modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009034.png" />. The analogue of the Legendre symbol is defined by the congruence
+
where $  N _ {\mathfrak P} $
 +
is the norm of the divisor $  \mathfrak P $,  
 +
equal to the number of residue classes of the maximal order of this field modulo $  \mathfrak P $.  
 +
The analogue of the Legendre symbol is defined by the congruence
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009035.png" /></td> </tr></table>
+
$$
 +
\left ( {
 +
\frac{a}{\mathfrak P}
 +
} \right )  = \
 +
\zeta  ^ {k}  \equiv \
 +
a ^ {( N _ {\mathfrak P} - 1) / {n } } \
 +
(  \mathop{\rm mod}  \mathfrak P ).
 +
$$
  
The power-residue symbol <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009036.png" /> for a pair of integers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009037.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009038.png" />, analogous to the Jacobi symbol, is defined by the formula
+
The power-residue symbol $  \left (
 +
\frac{a}{b}
 +
\right ) $
 +
for a pair of integers $  a $
 +
and $  b $,  
 +
analogous to the Jacobi symbol, is defined by the formula
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009039.png" /></td> </tr></table>
+
$$
 +
\left ( {
 +
\frac{a}{b}
 +
} \right )  = \
 +
\prod \left ( {
 +
\frac{a}{\mathfrak P _ {i} }
 +
} \right )  ^ {m} _ {i} ,
 +
$$
  
if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009040.png" /> is the decomposition of the principal divisor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009041.png" /> into prime factors and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009042.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009043.png" /> are relatively prime.
+
if $  ( b) = \prod \mathfrak P _ {i} ^ {m _ {i} } $
 +
is the decomposition of the principal divisor $  ( b) $
 +
into prime factors and $  b $
 +
and $  an $
 +
are relatively prime.
  
The reciprocity law for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009044.png" /> in the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009045.png" /> was established by Gauss [[#References|[2]]], while that for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009046.png" /> in the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009047.png" /> was established by G. Eisenstein [[#References|[3]]]. E. Kummer [[#References|[4]]] established the general reciprocity law for the power-residue symbol in the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009048.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009049.png" /> is a prime. Kummer's formula for a [[Regular prime number|regular prime number]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009050.png" /> has the form
+
The reciprocity law for $  n = 4 $
 +
in the field $  \mathbf Q ( i) $
 +
was established by Gauss [[#References|[2]]], while that for $  n = 3 $
 +
in the field $  \mathbf Q ( e ^ {2 \pi i / 3 } ) $
 +
was established by G. Eisenstein [[#References|[3]]]. E. Kummer [[#References|[4]]] established the general reciprocity law for the power-residue symbol in the field $  \mathbf Q ( e ^ {2 \pi i / n } ) $,  
 +
where $  n $
 +
is a prime. Kummer's formula for a [[Regular prime number|regular prime number]] $  n $
 +
has the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009051.png" /></td> </tr></table>
+
$$
 +
\left ( {
 +
\frac{a}{b}
 +
} \right ) \left ( {
 +
\frac{b}{a}
 +
} \right )  ^ {-} 1  = \
 +
\zeta ^ {l  ^ {1} ( a) l ^ {n- 1 }
 +
( b) - l  ^ {2} ( a) l ^ {n- 2 } ( b) + \dots - l ^ {n- 1 } ( a) l  ^ {1} ( b) } ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009052.png" /> are integers in the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009053.png" />,
+
where $  a, b $
 +
are integers in the field $  \mathbf Q ( e ^ {2 \pi i / n } ) $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009054.png" /></td> </tr></table>
+
$$
 +
a  \equiv  b  \equiv  1
 +
(  \mathop{\rm mod}  ( \zeta - 1)),
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009055.png" /></td> </tr></table>
+
$$
 +
l  ^ {i} ( a)  = \left [
 +
\frac{d  ^ {i}  \mathop{\rm log}  f( e  ^ {u} ) }{du  ^ {i} }
 +
\right ] _ {u=} 0 ,
 +
$$
  
and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009056.png" /> is a polynomial of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009057.png" /> such that
+
and $  f( t) $
 +
is a polynomial of degree $  n - 1 $
 +
such that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009058.png" /></td> </tr></table>
+
$$
 +
= f ( \zeta ),\  f ( 1)  = 1.
 +
$$
  
 
The next stage in the study of general reciprocity laws is represented by the work of D. Hilbert [[#References|[5]]], [[#References|[6]]], who cleared up their local aspect. He established, in certain cases, reciprocity laws in the form of a product formula for his norm-residue symbol:
 
The next stage in the study of general reciprocity laws is represented by the work of D. Hilbert [[#References|[5]]], [[#References|[6]]], who cleared up their local aspect. He established, in certain cases, reciprocity laws in the form of a product formula for his norm-residue symbol:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009059.png" /></td> </tr></table>
+
$$
 +
\prod _ { \mathfrak P } \left (
 +
\frac{a, b }{\mathfrak P }
 +
\right )  = 1.
 +
$$
  
He also noted the analogy between this formula and the theorem on residues of algebraic functions — regular points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009060.png" /> with norm-residue symbol <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009061.png" /> correspond to branch points on a Riemann surface.
+
He also noted the analogy between this formula and the theorem on residues of algebraic functions — regular points $  \mathfrak P $
 +
with norm-residue symbol $  \neq 1 $
 +
correspond to branch points on a Riemann surface.
  
 
Further advances in the study of reciprocity laws are due to Ph. Furtwängler , T. Takagi [[#References|[8]]], E. Artin [[#References|[9]]], and H. Hasse [[#References|[10]]]. The most general form of the reciprocity law was obtained by I.R. Shafarevich [[#References|[11]]].
 
Further advances in the study of reciprocity laws are due to Ph. Furtwängler , T. Takagi [[#References|[8]]], E. Artin [[#References|[9]]], and H. Hasse [[#References|[10]]]. The most general form of the reciprocity law was obtained by I.R. Shafarevich [[#References|[11]]].
  
Similarly to Gauss' reciprocity law, the general reciprocity law is closely connected with the study of decomposition laws of prime divisors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009062.png" /> of a given algebraic number field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009063.png" /> in an algebraic extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080090/r08009064.png" /> with an Abelian Galois group. In particular, [[Class field theory|class field theory]], which offers a solution to this problem, may be based [[#References|[12]]] on Shafarevich's reciprocity law.
+
Similarly to Gauss' reciprocity law, the general reciprocity law is closely connected with the study of decomposition laws of prime divisors $  \mathfrak P $
 +
of a given algebraic number field $  k $
 +
in an algebraic extension $  K/k $
 +
with an Abelian Galois group. In particular, [[Class field theory|class field theory]], which offers a solution to this problem, may be based [[#References|[12]]] on Shafarevich's reciprocity law.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  C.F. Gauss,  "Untersuchungen über höhere Arithmetik" , Springer  (1889)  (Translated from Latin)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  C.F. Gauss,  "Theoria residuorum biquadraticorum" , ''Werke'' , '''2''' , K. Gesellschaft Wissenschaft. Göttingen  (1876)  pp. 65</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  G. Eisenstein,  "Beweis des Reciprocitätssatzes für die cubischen Reste in der Theorie der aus dritten Würzeln der Einheit zusammengesetzten complexen Zahlen"  ''J. Math.'' , '''27'''  (1844)  pp. 289–310</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  E.E. Kummer,  "Allgemeine Reciprocitätsgesetze für beliebig hohe Potentzreste"  ''Ber. K. Akad. Wiss. Berlin''  (1850)  pp. 154–165</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  D. Hilbert,  "Die Theorie der algebraischen Zahlkörper"  ''Jahresber. Deutsch. Math.-Verein'' , '''4'''  (1897)  pp. 175–546</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  D. Hilbert,  "Ueber die theorie der relativquadratischen Zahlkörpern"  ''Jahresber. Deutsch. Math.-Verein'' , '''6''' :  1  (1899)  pp. 88–94</TD></TR><TR><TD valign="top">[7a]</TD> <TD valign="top">  Ph. Furtwängler,  "Die Reziprozitätsgesetze für Potenzreste mit Primzahlexponenten in algebraischen Zahlkörpern (Erster Teil)"  ''Math. Ann.'' , '''67'''  (1909)  pp. 1–31</TD></TR><TR><TD valign="top">[7b]</TD> <TD valign="top">  Ph. Furtwängler,  "Die Reziprozitätsgesetze für Potenzreste mit Primzahlexponenten in algebraischen Zahlkörpern (Zweiter Teil)"  ''Math. Ann.'' , '''72'''  (1912)  pp. 346–386</TD></TR><TR><TD valign="top">[7c]</TD> <TD valign="top">  Ph. Furtwängler,  "Die Reziprozitätsgesetze für Potenzreste mit Primzahlexponenten in algebraischen Zahlkörpern (Dritter und letzter Teil)"  ''Math. Ann.'' , '''74'''  (1913)  pp. 413–429</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  T. Takagi,  "Ueber eine Theorie der relativ Abel'schen Zahlkörpers"  ''J. Coll. Sci. Tokyo'' , '''41''' :  9  (1920)  pp. 1–133</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top">  E. Artin,  "Beweis des allgemeinen Reziprocitätsgesetzes"  ''Abh. Math. Sem. Univ. Hamburg'' , '''5'''  (1928)  pp. 353–363  ((also: Collected Papers, Addison-Wesley, 1965, pp. 131–141))</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top">  H. Hasse,  "Die Struktur der R. Brauerschen Algebrenklassengruppe über einen algebraischer Zahlkörper"  ''Math. Ann.'' , '''107'''  (1933)  pp. 731–760</TD></TR><TR><TD valign="top">[11]</TD> <TD valign="top">  I.R. Shafarevich,  "A general reciprocity law"  ''Uspekhi Mat. Nauk'' , '''3''' :  3  (1948)  pp. 165  (In Russian)</TD></TR><TR><TD valign="top">[12]</TD> <TD valign="top">  A.I. Lapin,  "A general law of dependence and a new foundation of class field theory"  ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''18'''  (1954)  pp. 335–378  (In Russian)</TD></TR><TR><TD valign="top">[13]</TD> <TD valign="top">  J.W.S. Cassels (ed.)  A. Fröhlich (ed.) , ''Algebraic number theory'' , Acad. Press  (1986)</TD></TR><TR><TD valign="top">[14]</TD> <TD valign="top">  D.K. Faddeev,  "On Hilbert's ninth problem" , ''Hilbert problems'' , Moscow  (1969)  pp. 131–140  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  C.F. Gauss,  "Untersuchungen über höhere Arithmetik" , Springer  (1889)  (Translated from Latin)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  C.F. Gauss,  "Theoria residuorum biquadraticorum" , ''Werke'' , '''2''' , K. Gesellschaft Wissenschaft. Göttingen  (1876)  pp. 65</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  G. Eisenstein,  "Beweis des Reciprocitätssatzes für die cubischen Reste in der Theorie der aus dritten Würzeln der Einheit zusammengesetzten complexen Zahlen"  ''J. Math.'' , '''27'''  (1844)  pp. 289–310</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  E.E. Kummer,  "Allgemeine Reciprocitätsgesetze für beliebig hohe Potentzreste"  ''Ber. K. Akad. Wiss. Berlin''  (1850)  pp. 154–165</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  D. Hilbert,  "Die Theorie der algebraischen Zahlkörper"  ''Jahresber. Deutsch. Math.-Verein'' , '''4'''  (1897)  pp. 175–546</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  D. Hilbert,  "Ueber die theorie der relativquadratischen Zahlkörpern"  ''Jahresber. Deutsch. Math.-Verein'' , '''6''' :  1  (1899)  pp. 88–94</TD></TR><TR><TD valign="top">[7a]</TD> <TD valign="top">  Ph. Furtwängler,  "Die Reziprozitätsgesetze für Potenzreste mit Primzahlexponenten in algebraischen Zahlkörpern (Erster Teil)"  ''Math. Ann.'' , '''67'''  (1909)  pp. 1–31</TD></TR><TR><TD valign="top">[7b]</TD> <TD valign="top">  Ph. Furtwängler,  "Die Reziprozitätsgesetze für Potenzreste mit Primzahlexponenten in algebraischen Zahlkörpern (Zweiter Teil)"  ''Math. Ann.'' , '''72'''  (1912)  pp. 346–386</TD></TR><TR><TD valign="top">[7c]</TD> <TD valign="top">  Ph. Furtwängler,  "Die Reziprozitätsgesetze für Potenzreste mit Primzahlexponenten in algebraischen Zahlkörpern (Dritter und letzter Teil)"  ''Math. Ann.'' , '''74'''  (1913)  pp. 413–429</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  T. Takagi,  "Ueber eine Theorie der relativ Abel'schen Zahlkörpers"  ''J. Coll. Sci. Tokyo'' , '''41''' :  9  (1920)  pp. 1–133</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top">  E. Artin,  "Beweis des allgemeinen Reziprocitätsgesetzes"  ''Abh. Math. Sem. Univ. Hamburg'' , '''5'''  (1928)  pp. 353–363  ((also: Collected Papers, Addison-Wesley, 1965, pp. 131–141))</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top">  H. Hasse,  "Die Struktur der R. Brauerschen Algebrenklassengruppe über einen algebraischer Zahlkörper"  ''Math. Ann.'' , '''107'''  (1933)  pp. 731–760</TD></TR><TR><TD valign="top">[11]</TD> <TD valign="top">  I.R. Shafarevich,  "A general reciprocity law"  ''Uspekhi Mat. Nauk'' , '''3''' :  3  (1948)  pp. 165  (In Russian)</TD></TR><TR><TD valign="top">[12]</TD> <TD valign="top">  A.I. Lapin,  "A general law of dependence and a new foundation of class field theory"  ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''18'''  (1954)  pp. 335–378  (In Russian)</TD></TR><TR><TD valign="top">[13]</TD> <TD valign="top">  J.W.S. Cassels (ed.)  A. Fröhlich (ed.) , ''Algebraic number theory'' , Acad. Press  (1986)</TD></TR><TR><TD valign="top">[14]</TD> <TD valign="top">  D.K. Faddeev,  "On Hilbert's ninth problem" , ''Hilbert problems'' , Moscow  (1969)  pp. 131–140  (In Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Latest revision as of 08:10, 6 June 2020


A number of statements expressing relations between power-residue symbols or norm-residue symbols (cf. Power residue; Norm-residue symbol).

The simplest manifestation of reciprocity laws is the following fact, which was already known to P. Fermat. The only prime divisors of the numbers $ x ^ {2} + 1 $ are $ 2 $ and primes which are terms of the arithmetical series $ 1 + 4k $. In other words, the identity

$$ x ^ {2} + 1 \equiv 0 ( \mathop{\rm mod} p) , $$

where $ p > 2 $ is a prime, is solvable if and only if $ p \equiv 1 $ $ ( \mathop{\rm mod} 4) $. This assertion may be expressed with the aid of the quadratic-residue symbol (Legendre symbol) $ \left ( \frac{a}{p} \right ) $ as follows:

$$ \left ( - \frac{1}{p} \right ) = (- 1) ^ {( p- 1) / {2 } } . $$

In the more general case, the problem of solvability of the congruence

$$ \tag{* } x ^ {2} \equiv a ( \mathop{\rm mod} p) $$

is solved by the Gauss reciprocity law:

$$ \left ( { \frac{p}{q} } \right ) \left ( { \frac{q}{p} } \right ) = \ (- 1) ^ {( p- 1) / 2 \cdot ( q- 1) / 2 } , $$

where $ p $ and $ q $ are different odd primes, and by the following two complements:

$$ \left ( {- \frac{1}{p} } \right ) = \ (- 1) ^ {( p- 2) / {2 } } \ \ \textrm{ and } \ \left ( { \frac{2}{p} } \right ) = \ (- 1) ^ {( p ^ {2} - 1) / {8 } } . $$

These relations for the Legendre symbol show that the prime numbers $ p $ for which (*) is solvable for a given non-square $ a $ are contained in exactly one-half of the residue classes modulo $ 4 | a | $.

C.F. Gauss recognized the great importance of this reciprocity law and gave several proofs of it, based on completely different concepts [1]. It follows from Gauss' reciprocity law and from its further generalization (the reciprocity law for the Jacobi symbol) that, in particular, the decomposition of a prime number $ p $ in a quadratic extension $ \mathbf Q ( \sqrt d ) $ of the field of rational numbers $ \mathbf Q $( cf. Quadratic field) is determined by the residue class of $ p $ modulo $ 4 | d | $.

Gauss' reciprocity law has been generalized to congruences of the form

$$ x ^ {n} \equiv a ( \mathop{\rm mod} p),\ \ n > 2. $$

However, this involves a transition from the arithmetic of the rational integers to the arithmetic of the integers of an extension $ K $ of finite degree of the field of rational numbers. Also, in generalizing the reciprocity law to $ n $- th power residues, the extension must be assumed to contain a primitive $ n $- th root of unity $ \zeta $. Under this assumption, prime divisors $ \mathfrak P $ of $ K $ which are not divisors of $ n $ satisfy the congruence

$$ N _ {\mathfrak P} \equiv 1 ( \mathop{\rm mod} n), $$

where $ N _ {\mathfrak P} $ is the norm of the divisor $ \mathfrak P $, equal to the number of residue classes of the maximal order of this field modulo $ \mathfrak P $. The analogue of the Legendre symbol is defined by the congruence

$$ \left ( { \frac{a}{\mathfrak P} } \right ) = \ \zeta ^ {k} \equiv \ a ^ {( N _ {\mathfrak P} - 1) / {n } } \ ( \mathop{\rm mod} \mathfrak P ). $$

The power-residue symbol $ \left ( \frac{a}{b} \right ) $ for a pair of integers $ a $ and $ b $, analogous to the Jacobi symbol, is defined by the formula

$$ \left ( { \frac{a}{b} } \right ) = \ \prod \left ( { \frac{a}{\mathfrak P _ {i} } } \right ) ^ {m} _ {i} , $$

if $ ( b) = \prod \mathfrak P _ {i} ^ {m _ {i} } $ is the decomposition of the principal divisor $ ( b) $ into prime factors and $ b $ and $ an $ are relatively prime.

The reciprocity law for $ n = 4 $ in the field $ \mathbf Q ( i) $ was established by Gauss [2], while that for $ n = 3 $ in the field $ \mathbf Q ( e ^ {2 \pi i / 3 } ) $ was established by G. Eisenstein [3]. E. Kummer [4] established the general reciprocity law for the power-residue symbol in the field $ \mathbf Q ( e ^ {2 \pi i / n } ) $, where $ n $ is a prime. Kummer's formula for a regular prime number $ n $ has the form

$$ \left ( { \frac{a}{b} } \right ) \left ( { \frac{b}{a} } \right ) ^ {-} 1 = \ \zeta ^ {l ^ {1} ( a) l ^ {n- 1 } ( b) - l ^ {2} ( a) l ^ {n- 2 } ( b) + \dots - l ^ {n- 1 } ( a) l ^ {1} ( b) } , $$

where $ a, b $ are integers in the field $ \mathbf Q ( e ^ {2 \pi i / n } ) $,

$$ a \equiv b \equiv 1 ( \mathop{\rm mod} ( \zeta - 1)), $$

$$ l ^ {i} ( a) = \left [ \frac{d ^ {i} \mathop{\rm log} f( e ^ {u} ) }{du ^ {i} } \right ] _ {u=} 0 , $$

and $ f( t) $ is a polynomial of degree $ n - 1 $ such that

$$ a = f ( \zeta ),\ f ( 1) = 1. $$

The next stage in the study of general reciprocity laws is represented by the work of D. Hilbert [5], [6], who cleared up their local aspect. He established, in certain cases, reciprocity laws in the form of a product formula for his norm-residue symbol:

$$ \prod _ { \mathfrak P } \left ( \frac{a, b }{\mathfrak P } \right ) = 1. $$

He also noted the analogy between this formula and the theorem on residues of algebraic functions — regular points $ \mathfrak P $ with norm-residue symbol $ \neq 1 $ correspond to branch points on a Riemann surface.

Further advances in the study of reciprocity laws are due to Ph. Furtwängler , T. Takagi [8], E. Artin [9], and H. Hasse [10]. The most general form of the reciprocity law was obtained by I.R. Shafarevich [11].

Similarly to Gauss' reciprocity law, the general reciprocity law is closely connected with the study of decomposition laws of prime divisors $ \mathfrak P $ of a given algebraic number field $ k $ in an algebraic extension $ K/k $ with an Abelian Galois group. In particular, class field theory, which offers a solution to this problem, may be based [12] on Shafarevich's reciprocity law.

References

[1] C.F. Gauss, "Untersuchungen über höhere Arithmetik" , Springer (1889) (Translated from Latin)
[2] C.F. Gauss, "Theoria residuorum biquadraticorum" , Werke , 2 , K. Gesellschaft Wissenschaft. Göttingen (1876) pp. 65
[3] G. Eisenstein, "Beweis des Reciprocitätssatzes für die cubischen Reste in der Theorie der aus dritten Würzeln der Einheit zusammengesetzten complexen Zahlen" J. Math. , 27 (1844) pp. 289–310
[4] E.E. Kummer, "Allgemeine Reciprocitätsgesetze für beliebig hohe Potentzreste" Ber. K. Akad. Wiss. Berlin (1850) pp. 154–165
[5] D. Hilbert, "Die Theorie der algebraischen Zahlkörper" Jahresber. Deutsch. Math.-Verein , 4 (1897) pp. 175–546
[6] D. Hilbert, "Ueber die theorie der relativquadratischen Zahlkörpern" Jahresber. Deutsch. Math.-Verein , 6 : 1 (1899) pp. 88–94
[7a] Ph. Furtwängler, "Die Reziprozitätsgesetze für Potenzreste mit Primzahlexponenten in algebraischen Zahlkörpern (Erster Teil)" Math. Ann. , 67 (1909) pp. 1–31
[7b] Ph. Furtwängler, "Die Reziprozitätsgesetze für Potenzreste mit Primzahlexponenten in algebraischen Zahlkörpern (Zweiter Teil)" Math. Ann. , 72 (1912) pp. 346–386
[7c] Ph. Furtwängler, "Die Reziprozitätsgesetze für Potenzreste mit Primzahlexponenten in algebraischen Zahlkörpern (Dritter und letzter Teil)" Math. Ann. , 74 (1913) pp. 413–429
[8] T. Takagi, "Ueber eine Theorie der relativ Abel'schen Zahlkörpers" J. Coll. Sci. Tokyo , 41 : 9 (1920) pp. 1–133
[9] E. Artin, "Beweis des allgemeinen Reziprocitätsgesetzes" Abh. Math. Sem. Univ. Hamburg , 5 (1928) pp. 353–363 ((also: Collected Papers, Addison-Wesley, 1965, pp. 131–141))
[10] H. Hasse, "Die Struktur der R. Brauerschen Algebrenklassengruppe über einen algebraischer Zahlkörper" Math. Ann. , 107 (1933) pp. 731–760
[11] I.R. Shafarevich, "A general reciprocity law" Uspekhi Mat. Nauk , 3 : 3 (1948) pp. 165 (In Russian)
[12] A.I. Lapin, "A general law of dependence and a new foundation of class field theory" Izv. Akad. Nauk SSSR Ser. Mat. , 18 (1954) pp. 335–378 (In Russian)
[13] J.W.S. Cassels (ed.) A. Fröhlich (ed.) , Algebraic number theory , Acad. Press (1986)
[14] D.K. Faddeev, "On Hilbert's ninth problem" , Hilbert problems , Moscow (1969) pp. 131–140 (In Russian)

Comments

For a discussion of reciprocity laws in the context of modern class field theory see [a1] and Class field theory.

References

[a1] J. Neukirch, "Class field theory" , Springer (1986) pp. Chapt. 4, §4
How to Cite This Entry:
Reciprocity laws. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Reciprocity_laws&oldid=14911
This article was adapted from an original article by S.A. Stepanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article