|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
− | Substitutions of the variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036590/e0365901.png" /> in an integral | + | {{TEX|done}} |
| + | Substitutions of the variable $x=x(t)$ in an integral |
| + | \begin{equation} |
| + | \label{eq1} \int R(x,\sqrt{ax^2+bx+c})\mathrm{d}x, |
| + | \end{equation} |
| + | where $R$ is a rational function of its arguments, that reduce \eqref{eq1} to the integral of a rational function. There are three types of such substitutions. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036590/e0365902.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
| + | The first Euler substitution: If $a>0$, then |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036590/e0365903.png" /> is a rational function of its arguments, that reduce (1) to the integral of a rational function. There are three types of such substitutions.
| + | \[ \sqrt{ax^2+bx+c}=\pm x\sqrt{a}\pm t.\] |
| | | |
− | The first Euler substitution: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036590/e0365904.png" />, then | + | The second Euler substitution: If the roots $x_1$ and $x_2$ of the quadratic polynomial $ax^2+bx+c$ are real, then |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036590/e0365905.png" /></td> </tr></table>
| + | \[\sqrt{ax^2+bx+c}=\pm t(x-x_1).\] |
| | | |
− | The second Euler substitution: If the roots <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036590/e0365906.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036590/e0365907.png" /> of the quadratic polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036590/e0365908.png" /> are real, then | + | The third Euler substitution: If $c>0$, then |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036590/e0365909.png" /></td> </tr></table>
| + | \[ \sqrt{ ax^2+bx+c} = \pm \sqrt{c}\pm xt.\] |
| | | |
− | The third Euler substitution: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036590/e03659010.png" />, then
| + | (Any combination of signs may be chosen on the right-hand side in each case.) All the Euler substitutions allow both the original variable of integration $x$ and $\sqrt{ax^2+bx+c}$ to be expressed rationally in terms of the new variable $t$. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036590/e03659011.png" /></td> </tr></table>
| + | The first two Euler substitutions permit the reduction of \eqref{eq1} to the integral of a rational function over any interval on which $\sqrt{ax^2+bx+c}$ takes only real values. |
− | | |
− | (Any combination of signs may be chosen on the right-hand side in each case.) All the Euler substitutions allow both the original variable of integration <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036590/e03659012.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036590/e03659013.png" /> to be expressed rationally in terms of the new variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036590/e03659014.png" />.
| |
− | | |
− | The first two Euler substitutions permit the reduction of (1) to the integral of a rational function over any interval on which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036590/e03659015.png" /> takes only real values. | |
| | | |
| Geometrically, the Euler substitutions mean that the second-order curve | | Geometrically, the Euler substitutions mean that the second-order curve |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036590/e03659016.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
| + | \begin{equation}\label{eq2} y^2= ax^2+bx+c \end{equation} |
| | | |
− | has a rational parametric representation; for if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036590/e03659017.png" /> is chosen to be the angular coefficient of the pencil of straight lines <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036590/e03659018.png" /> passing through a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036590/e03659019.png" /> of (2), then the coordinates of any point on this curve can be expressed rationally in terms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036590/e03659020.png" />. In the case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036590/e03659021.png" />, that is, when (2) is a hyperbola, the first Euler substitution is obtained by taking as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036590/e03659022.png" /> one of the points at infinity defined by the directions of the asymptotes of this hyperbola; when the roots <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036590/e03659023.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036590/e03659024.png" /> of the quadratic polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036590/e03659025.png" /> are real, the second Euler substitution is obtained by taking as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036590/e03659026.png" /> one of the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036590/e03659027.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036590/e03659028.png" />; finally, when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036590/e03659029.png" />, the third Euler substitution is obtained by taking as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036590/e03659030.png" /> one of the points where the curve (2) intersects the ordinate axis, that is, one of the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036590/e03659031.png" />. | + | has a rational parametric representation; for if $t$ is chosen to be the angular coefficient of the pencil of straight lines $y-y_0=t(x-x_0)$ passing through a point $(x_0,y_0)$ of \eqref{eq2}, then the coordinates of any point on this curve can be expressed rationally in terms of $t$. In the case when $a>0$, that is, when \eqref{eq2} is a hyperbola, the first Euler substitution is obtained by taking as $(x_0,y_0)$ one of the points at infinity defined by the directions of the asymptotes of this hyperbola; when the roots $x_1$ and $x_2$ of the quadratic polynomial $ax^2+bx+c$ are real, the second Euler substitution is obtained by taking as $(x_0,y_0)$ one of the points $(x_1,0)$ or $(x_2,0)$; finally, when $c>0$, the third Euler substitution is obtained by taking as $(x_0,y_0)$ one of the points where the curve \eqref{eq2} intersects the ordinate axis, that is, one of the points $(0,\pm\sqrt{c})$. |
Substitutions of the variable $x=x(t)$ in an integral
\begin{equation}
\label{eq1} \int R(x,\sqrt{ax^2+bx+c})\mathrm{d}x,
\end{equation}
where $R$ is a rational function of its arguments, that reduce \eqref{eq1} to the integral of a rational function. There are three types of such substitutions.
The first Euler substitution: If $a>0$, then
\[ \sqrt{ax^2+bx+c}=\pm x\sqrt{a}\pm t.\]
The second Euler substitution: If the roots $x_1$ and $x_2$ of the quadratic polynomial $ax^2+bx+c$ are real, then
\[\sqrt{ax^2+bx+c}=\pm t(x-x_1).\]
The third Euler substitution: If $c>0$, then
\[ \sqrt{ ax^2+bx+c} = \pm \sqrt{c}\pm xt.\]
(Any combination of signs may be chosen on the right-hand side in each case.) All the Euler substitutions allow both the original variable of integration $x$ and $\sqrt{ax^2+bx+c}$ to be expressed rationally in terms of the new variable $t$.
The first two Euler substitutions permit the reduction of \eqref{eq1} to the integral of a rational function over any interval on which $\sqrt{ax^2+bx+c}$ takes only real values.
Geometrically, the Euler substitutions mean that the second-order curve
\begin{equation}\label{eq2} y^2= ax^2+bx+c \end{equation}
has a rational parametric representation; for if $t$ is chosen to be the angular coefficient of the pencil of straight lines $y-y_0=t(x-x_0)$ passing through a point $(x_0,y_0)$ of \eqref{eq2}, then the coordinates of any point on this curve can be expressed rationally in terms of $t$. In the case when $a>0$, that is, when \eqref{eq2} is a hyperbola, the first Euler substitution is obtained by taking as $(x_0,y_0)$ one of the points at infinity defined by the directions of the asymptotes of this hyperbola; when the roots $x_1$ and $x_2$ of the quadratic polynomial $ax^2+bx+c$ are real, the second Euler substitution is obtained by taking as $(x_0,y_0)$ one of the points $(x_1,0)$ or $(x_2,0)$; finally, when $c>0$, the third Euler substitution is obtained by taking as $(x_0,y_0)$ one of the points where the curve \eqref{eq2} intersects the ordinate axis, that is, one of the points $(0,\pm\sqrt{c})$.