|
|
Line 1: |
Line 1: |
− | The distribution of the fractional parts <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033510/d0335101.png" /> of a sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033510/d0335102.png" /> of elements of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033510/d0335103.png" />-dimensional Euclidean space in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033510/d0335104.png" />-dimensional unit cube <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033510/d0335105.png" />. Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033510/d0335106.png" /> denotes the fractional part of a number. | + | The distribution of the fractional parts $\{P_j\} = (\{x_1^{(j)}\},\ldots,\{x_n^{(j)}\})$ of a sequence $P_j = (x_1^{(j)},\ldots,x_n^{(j)})$ of elements of the $n$-dimensional Euclidean space in the $n$-dimensional unit cube $E = \{ (x_1,\ldots,x_n) : 0 \le x_i < 1\,\ i=1,\ldots n\}$. Here $\{x\}$ denotes the [[fractional part of a number]] $x$. |
| | | |
− | The sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033510/d0335107.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033510/d0335108.png" /> is said to be uniformly distributed in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033510/d0335109.png" /> if the equality | + | The sequence $\{P_j\}$, $j=1,2,\ldots$ is said to be uniformly distributed in $E$ if the equality |
| + | $$ |
| + | \lim_{m\rightarrow\infty} \frac{\phi_m(V)}{m} = |V| |
| + | $$ |
| + | holds for any rectangle $V$, where $\phi_m(V)$ is the number of those points among the first $m$ members of the sequence which belong to $V$ and $|V|$ is the measure of $V$. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033510/d03351010.png" /></td> </tr></table>
| + | A sequence $P_j$, $j=1,2,\ldots$ is said to be uniformly distributed modulo one if the corresponding sequence of fractional parts $\{P_j\}$ is uniformly distributed in $E$. |
− | | |
− | holds for any rectangle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033510/d03351011.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033510/d03351012.png" /> is the number of those points among the first <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033510/d03351013.png" /> members of the sequence which belong to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033510/d03351014.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033510/d03351015.png" /> is the measure of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033510/d03351016.png" />.
| |
− | | |
− | A sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033510/d03351017.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033510/d03351018.png" /> is said to be uniformly distributed modulo one if the corresponding sequence of fractional parts <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033510/d03351019.png" /> is uniformly distributed in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033510/d03351020.png" />. | |
| | | |
| ===Weyl's criterion for higher-dimensional distribution modulo one.=== | | ===Weyl's criterion for higher-dimensional distribution modulo one.=== |
− | A sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033510/d03351021.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033510/d03351022.png" /> is uniformly distributed in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033510/d03351023.png" /> if and only if | + | A sequence $P_j$, $j=1,2,\ldots$ is uniformly distributed in $E$ if and only if |
− | | + | $$ |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033510/d03351024.png" /></td> </tr></table>
| + | \lim_{N\rightarrow\infty} \frac{1}{N} \sum_{j=1}^N \exp\left({ 2\pi i (a_1x_1^{(j)}+\cdots+a_n x_n^{(j)}) }\right) = 0 |
− | | + | $$ |
− | for any set of integers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033510/d03351025.png" />. A particular case of this theorem is the [[Weyl criterion|Weyl criterion]] for a sequence of real numbers to be uniformly distributed modulo one. Weyl's criterion implies the following theorem of Kronecker: Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033510/d03351026.png" /> be real numbers that are linearly independent over the field of rational numbers, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033510/d03351027.png" /> be arbitrary real numbers and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033510/d03351028.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033510/d03351029.png" /> be positive numbers; then there are integers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033510/d03351030.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033510/d03351031.png" /> such that | + | for any set of integers $(a_1,\ldots,a_n) \ne (0,\ldots,0)$. A particular case of this theorem is the [[Weyl criterion]] for a sequence of real numbers to be uniformly distributed modulo one. Weyl's criterion implies the following theorem of Kronecker: Let $\theta_1,\ldots,\theta_n,1$ be real numbers that are linearly independent over the field of rational numbers, let $\alpha_1,\ldots,\alpha_n$ be arbitrary real numbers and let $N$ and $\epsilon$ be positive numbers; then there are integers $m$ and $p_1,\ldots,p_n$ such that |
− | | + | $$ |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033510/d03351032.png" /></td> </tr></table>
| + | m>N\,,\ \ \ |m\theta_i-p_i-\alpha_i| < \epsilon |
− | | + | $$ |
− | for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033510/d03351033.png" />. In other words, the sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033510/d03351034.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033510/d03351035.png" /> is uniformly distributed modulo one. | + | for all $i=1,\ldots,n$. Indeed, the sequence $m\theta = (m\theta_1,\ldots,m\theta_n)$, $m=1,2,\ldots$ is uniformly distributed modulo one. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> J.W.S. Cassels, "An introduction to diophantine approximation" , Cambridge Univ. Press (1957)</TD></TR></table> | + | <table> |
− | | + | <TR><TD valign="top">[1]</TD> <TD valign="top"> J.W.S. Cassels, "An introduction to diophantine approximation" , Cambridge Univ. Press (1957)</TD></TR> |
| + | </table> |
| | | |
| + | ====Comments==== |
| + | For additional references see [[Distribution modulo one]]. |
| | | |
− | ====Comments====
| + | {{TEX|done}} |
− | For additional references see [[Distribution modulo one|Distribution modulo one]].
| |
The distribution of the fractional parts $\{P_j\} = (\{x_1^{(j)}\},\ldots,\{x_n^{(j)}\})$ of a sequence $P_j = (x_1^{(j)},\ldots,x_n^{(j)})$ of elements of the $n$-dimensional Euclidean space in the $n$-dimensional unit cube $E = \{ (x_1,\ldots,x_n) : 0 \le x_i < 1\,\ i=1,\ldots n\}$. Here $\{x\}$ denotes the fractional part of a number $x$.
The sequence $\{P_j\}$, $j=1,2,\ldots$ is said to be uniformly distributed in $E$ if the equality
$$
\lim_{m\rightarrow\infty} \frac{\phi_m(V)}{m} = |V|
$$
holds for any rectangle $V$, where $\phi_m(V)$ is the number of those points among the first $m$ members of the sequence which belong to $V$ and $|V|$ is the measure of $V$.
A sequence $P_j$, $j=1,2,\ldots$ is said to be uniformly distributed modulo one if the corresponding sequence of fractional parts $\{P_j\}$ is uniformly distributed in $E$.
Weyl's criterion for higher-dimensional distribution modulo one.
A sequence $P_j$, $j=1,2,\ldots$ is uniformly distributed in $E$ if and only if
$$
\lim_{N\rightarrow\infty} \frac{1}{N} \sum_{j=1}^N \exp\left({ 2\pi i (a_1x_1^{(j)}+\cdots+a_n x_n^{(j)}) }\right) = 0
$$
for any set of integers $(a_1,\ldots,a_n) \ne (0,\ldots,0)$. A particular case of this theorem is the Weyl criterion for a sequence of real numbers to be uniformly distributed modulo one. Weyl's criterion implies the following theorem of Kronecker: Let $\theta_1,\ldots,\theta_n,1$ be real numbers that are linearly independent over the field of rational numbers, let $\alpha_1,\ldots,\alpha_n$ be arbitrary real numbers and let $N$ and $\epsilon$ be positive numbers; then there are integers $m$ and $p_1,\ldots,p_n$ such that
$$
m>N\,,\ \ \ |m\theta_i-p_i-\alpha_i| < \epsilon
$$
for all $i=1,\ldots,n$. Indeed, the sequence $m\theta = (m\theta_1,\ldots,m\theta_n)$, $m=1,2,\ldots$ is uniformly distributed modulo one.
References
[1] | J.W.S. Cassels, "An introduction to diophantine approximation" , Cambridge Univ. Press (1957) |
For additional references see Distribution modulo one.