|
|
Line 1: |
Line 1: |
− | ''of numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059300/l0593001.png" />''
| + | {{TEX|done}} |
| | | |
− | The function
| + | ''of numbers $\alpha_1,\ldots,\alpha_n$'' |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059300/l0593002.png" /></td> </tr></table>
| + | {{MSC|11J}} |
− | | |
− | where the minimum is taken over all possible sets of integers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059300/l0593003.png" /> satisfying the conditions
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059300/l0593004.png" /></td> </tr></table>
| |
| | | |
| + | The function |
| + | $$ |
| + | L(\alpha_1,\ldots,\alpha_n|H) = L(H) = \min |a_1 \alpha_1 + \cdots + a_n \alpha_n| |
| + | $$ |
| + | where the minimum is taken over all possible sets of integers $a_1,\ldots,a_n$, not all zero, satisfying the conditions |
| + | $$ |
| + | |a_i| \le H |
| + | $$ |
| It is known that | | It is known that |
− | | + | $$ |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059300/l0593005.png" /></td> </tr></table> | + | L(\alpha_1,\ldots,\alpha_n|H) < (|a_1| + \cdots + |a_n|) H^{\tau(n-1)} |
− | | + | $$ |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059300/l0593006.png" /> if all the numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059300/l0593007.png" /> are real, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059300/l0593008.png" /> otherwise. To obtain lower bounds of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059300/l0593009.png" /> with respect to the parameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059300/l05930010.png" /> for specific sets of numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059300/l05930011.png" /> is one of the problems of the theory of [[Diophantine approximations|Diophantine approximations]]. | + | where $\tau=1$ if all the numbers $\alpha_1,\ldots,\alpha_n$ are real, and $\tau=\frac12$ otherwise. To obtain lower bounds on $L(\alpha_1,\ldots,\alpha_n|H)$ with respect to the parameter $H$ for specific sets of numbers $\alpha_1,\ldots,\alpha_n$ is one of the problems of the theory of [[Diophantine approximations]]. |
Latest revision as of 19:48, 20 November 2014
of numbers $\alpha_1,\ldots,\alpha_n$
2020 Mathematics Subject Classification: Primary: 11J [MSN][ZBL]
The function
$$
L(\alpha_1,\ldots,\alpha_n|H) = L(H) = \min |a_1 \alpha_1 + \cdots + a_n \alpha_n|
$$
where the minimum is taken over all possible sets of integers $a_1,\ldots,a_n$, not all zero, satisfying the conditions
$$
|a_i| \le H
$$
It is known that
$$
L(\alpha_1,\ldots,\alpha_n|H) < (|a_1| + \cdots + |a_n|) H^{\tau(n-1)}
$$
where $\tau=1$ if all the numbers $\alpha_1,\ldots,\alpha_n$ are real, and $\tau=\frac12$ otherwise. To obtain lower bounds on $L(\alpha_1,\ldots,\alpha_n|H)$ with respect to the parameter $H$ for specific sets of numbers $\alpha_1,\ldots,\alpha_n$ is one of the problems of the theory of Diophantine approximations.
How to Cite This Entry:
Linear independence, measure of. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Linear_independence,_measure_of&oldid=14591
This article was adapted from an original article by Yu.V. Nesterenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098.
See original article