|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
| + | <!-- |
| + | f0415801.png |
| + | $#A+1 = 58 n = 0 |
| + | $#C+1 = 58 : ~/encyclopedia/old_files/data/F041/F.0401580 Free ideal ring, |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| + | |
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | |
| ''fir.'' | | ''fir.'' |
| | | |
− | A (non-commutative) ring (with unit element) in which all (one-sided) ideals are free. More precisely, a right fir is a ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f0415801.png" /> in which all right ideals are free of unique rank, as right <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f0415802.png" />-modules. A left fir is defined correspondingly. Firs may be regarded as generalizing the notion of a principal ideal domain. | + | A (non-commutative) ring (with unit element) in which all (one-sided) ideals are free. More precisely, a right fir is a ring $ R $ |
| + | in which all right ideals are free of unique rank, as right $ R $-modules. A left fir is defined correspondingly. Firs may be regarded as generalizing the notion of a principal ideal domain. |
| | | |
− | Consider dependence relations of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f0415803.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f0415804.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f0415805.png" /> a row vector, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f0415806.png" /> a column vector). Such a relation is called trivial if for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f0415807.png" /> either <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f0415808.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f0415809.png" />. An <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158010.png" />-term relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158011.png" /> is trivialized by an invertible <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158012.png" /> matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158013.png" /> if the relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158014.png" /> is trivial. Now let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158015.png" /> be a non-zero ring with unit element, then the following properties are all equivalent: i) every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158016.png" />-term relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158017.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158018.png" />, can be trivialized by an invertible <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158019.png" /> matrix; ii) given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158020.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158021.png" />, which are right linearly dependent, there exist <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158022.png" />-matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158023.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158024.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158025.png" /> has at least one zero component; iii) any right ideal of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158026.png" /> generated by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158027.png" /> right linearly dependent elements has fewer than <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158028.png" /> generators; and iv) any right ideal of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158029.png" /> on at most <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158030.png" /> generators is free of unique rank. These properties are also equivalent to their left-right analogues. There are several more equivalent conditions, cf. [[#References|[a1]]]. | + | Consider dependence relations of the form $ x \cdot y = x _ {1} y _ {1} + {} \dots + x _ {n} y _ {n} = 0 $, |
| + | $ x _ {i} , y _ {i} \in R $ ($ x $ |
| + | a row vector, $ y $ |
| + | a column vector). Such a relation is called trivial if for each $ i = 1 \dots n $ |
| + | either $ x _ {i} = 0 $ |
| + | or $ y _ {i} = 0 $. |
| + | An $ n $-term relation $ x \cdot y = 0 $ |
| + | is trivialized by an invertible $ n \times n $ |
| + | matrix $ M $ |
| + | if the relation $ ( xM) ( M ^ {-1} y) $ |
| + | is trivial. Now let $ R $ |
| + | be a non-zero ring with unit element, then the following properties are all equivalent: i) every $ m $-term relation $ \sum x _ {i} y _ {i} = 0 $, |
| + | $ m \leq n $, |
| + | can be trivialized by an invertible $ m \times m $ |
| + | matrix; ii) given $ x _ {1} \dots x _ {n} \in R $, |
| + | $ m \leq n $, |
| + | which are right linearly dependent, there exist $ ( m \times m ) $-matrices $ M , N $ |
| + | such that $ MN = I _ {m} $ |
| + | and $ ( x _ {1} \dots x _ {m} ) M $ |
| + | has at least one zero component; iii) any right ideal of $ R $ |
| + | generated by $ m \leq n $ |
| + | right linearly dependent elements has fewer than $ m $ |
| + | generators; and iv) any right ideal of $ R $ |
| + | on at most $ n $ |
| + | generators is free of unique rank. These properties are also equivalent to their left-right analogues. There are several more equivalent conditions, cf. [[#References|[a1]]]. |
| | | |
− | A ring which satisfies these conditions is called an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158032.png" />-fir. A ring which is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158033.png" />-fir for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158034.png" /> is called a semi-fir. | + | A ring which satisfies these conditions is called an $ n $-fir. A ring which is an $ n $-fir for all $ n $ |
| + | is called a semi-fir. |
| | | |
− | An integral domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158035.png" /> satisfying <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158036.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158037.png" /> (the Ore condition) is called a right Ore ring (cf. also [[Associative rings and algebras|Associative rings and algebras]] for Ore's theorem). It follows that a ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158038.png" /> is a Bezout domain (cf. [[Bezout ring|Bezout ring]]) if and only if it is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158039.png" />-fir and a right Ore ring. | + | An integral domain $ R $ |
| + | satisfying $ aR \cap bR \neq \{ 0 \} $ |
| + | for all $ a , b \in R ^ {*} = R \setminus \{ 0 \} $ (the Ore condition) is called a right Ore ring (cf. also [[Associative rings and algebras|Associative rings and algebras]] for Ore's theorem). It follows that a ring $ R $ |
| + | is a Bezout domain (cf. [[Bezout ring|Bezout ring]]) if and only if it is a $ 2 $-fir and a right Ore ring. |
| | | |
− | For any ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158040.png" /> the following are equivalent: 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158041.png" /> is a total matrix ring over a semi-fir; 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158042.png" /> is Morita equivalent (cf. [[Morita equivalence|Morita equivalence]]) to a semi-fir; 3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158043.png" /> is right semi-hereditary (i.e. all finitely-generated right ideals are projective) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158044.png" /> is projective-trivial; and 4) the left-right analogue of 3). Here a ring is projective-trivial if there exists a projective right module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158045.png" /> (called the minimal projective of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158046.png" />) such that every finitely-projective right module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158047.png" /> is the direct sum of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158048.png" /> copies of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158049.png" /> for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158050.png" /> unique determined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158051.png" />. | + | For any ring $ R $ |
| + | the following are equivalent: 1) $ R $ |
| + | is a total matrix ring over a semi-fir; 2) $ R $ |
| + | is Morita equivalent (cf. [[Morita equivalence|Morita equivalence]]) to a semi-fir; 3) $ R $ |
| + | is right semi-hereditary (i.e. all finitely-generated right ideals are projective) and $ R $ |
| + | is projective-trivial; and 4) the left-right analogue of 3). Here a ring is projective-trivial if there exists a projective right module $ P $ (called the minimal projective of $ R $) |
| + | such that every finitely-projective right module $ M $ |
| + | is the direct sum of $ n $ |
| + | copies of $ P $ |
| + | for some $ n $ |
| + | unique determined by $ M $. |
| | | |
− | For any ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158052.png" /> the following are equivalent: a) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158053.png" /> is a total matrix ring over a right fir; b) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158054.png" /> is Morita equivalent to a right fir; and c) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158055.png" /> is right hereditary (i.e. all right ideals are projective) and projective-trivial. | + | For any ring $ R $ |
| + | the following are equivalent: a) $ R $ |
| + | is a total matrix ring over a right fir; b) $ R $ |
| + | is Morita equivalent to a right fir; and c) $ R $ |
| + | is right hereditary (i.e. all right ideals are projective) and projective-trivial. |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158056.png" /> is a semi-fir, then a right module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158057.png" /> is flat if and only if every finitely-generated submodule of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158058.png" /> is free (i.e. if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041580/f04158059.png" /> is locally free). | + | If $ R $ |
| + | is a semi-fir, then a right module $ P $ |
| + | is flat if and only if every finitely-generated submodule of $ P $ |
| + | is free (i.e. if and only if $ P $ |
| + | is locally free). |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P.M. Cohn, "Free rings and their relations" , Acad. Press (1971)</TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P.M. Cohn, "Free rings and their relations" , Acad. Press (1971)</TD></TR></table> |
fir.
A (non-commutative) ring (with unit element) in which all (one-sided) ideals are free. More precisely, a right fir is a ring $ R $
in which all right ideals are free of unique rank, as right $ R $-modules. A left fir is defined correspondingly. Firs may be regarded as generalizing the notion of a principal ideal domain.
Consider dependence relations of the form $ x \cdot y = x _ {1} y _ {1} + {} \dots + x _ {n} y _ {n} = 0 $,
$ x _ {i} , y _ {i} \in R $ ($ x $
a row vector, $ y $
a column vector). Such a relation is called trivial if for each $ i = 1 \dots n $
either $ x _ {i} = 0 $
or $ y _ {i} = 0 $.
An $ n $-term relation $ x \cdot y = 0 $
is trivialized by an invertible $ n \times n $
matrix $ M $
if the relation $ ( xM) ( M ^ {-1} y) $
is trivial. Now let $ R $
be a non-zero ring with unit element, then the following properties are all equivalent: i) every $ m $-term relation $ \sum x _ {i} y _ {i} = 0 $,
$ m \leq n $,
can be trivialized by an invertible $ m \times m $
matrix; ii) given $ x _ {1} \dots x _ {n} \in R $,
$ m \leq n $,
which are right linearly dependent, there exist $ ( m \times m ) $-matrices $ M , N $
such that $ MN = I _ {m} $
and $ ( x _ {1} \dots x _ {m} ) M $
has at least one zero component; iii) any right ideal of $ R $
generated by $ m \leq n $
right linearly dependent elements has fewer than $ m $
generators; and iv) any right ideal of $ R $
on at most $ n $
generators is free of unique rank. These properties are also equivalent to their left-right analogues. There are several more equivalent conditions, cf. [a1].
A ring which satisfies these conditions is called an $ n $-fir. A ring which is an $ n $-fir for all $ n $
is called a semi-fir.
An integral domain $ R $
satisfying $ aR \cap bR \neq \{ 0 \} $
for all $ a , b \in R ^ {*} = R \setminus \{ 0 \} $ (the Ore condition) is called a right Ore ring (cf. also Associative rings and algebras for Ore's theorem). It follows that a ring $ R $
is a Bezout domain (cf. Bezout ring) if and only if it is a $ 2 $-fir and a right Ore ring.
For any ring $ R $
the following are equivalent: 1) $ R $
is a total matrix ring over a semi-fir; 2) $ R $
is Morita equivalent (cf. Morita equivalence) to a semi-fir; 3) $ R $
is right semi-hereditary (i.e. all finitely-generated right ideals are projective) and $ R $
is projective-trivial; and 4) the left-right analogue of 3). Here a ring is projective-trivial if there exists a projective right module $ P $ (called the minimal projective of $ R $)
such that every finitely-projective right module $ M $
is the direct sum of $ n $
copies of $ P $
for some $ n $
unique determined by $ M $.
For any ring $ R $
the following are equivalent: a) $ R $
is a total matrix ring over a right fir; b) $ R $
is Morita equivalent to a right fir; and c) $ R $
is right hereditary (i.e. all right ideals are projective) and projective-trivial.
If $ R $
is a semi-fir, then a right module $ P $
is flat if and only if every finitely-generated submodule of $ P $
is free (i.e. if and only if $ P $
is locally free).
References
[a1] | P.M. Cohn, "Free rings and their relations" , Acad. Press (1971) |