Difference between revisions of "Lie differentiation"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | l0585801.png | ||
+ | $#A+1 = 115 n = 0 | ||
+ | $#C+1 = 115 : ~/encyclopedia/old_files/data/L058/L.0508580 Lie differentiation | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A natural operation on a [[Differentiable manifold|differentiable manifold]] $ M $ | |
+ | that associates with a differentiable vector field $ X $ | ||
+ | and a differentiable geometric object $ Q $ | ||
+ | on $ M $( | ||
+ | cf. [[Geometric objects, theory of|Geometric objects, theory of]]) a new geometric object $ {\mathcal L} _ {X} Q $, | ||
+ | which describes the rate of change of $ Q $ | ||
+ | with respect to the one-parameter (local) transformation group $ \phi _ {t} $ | ||
+ | of $ M $ | ||
+ | generated by $ X $. | ||
+ | The geometric object $ {\mathcal L} _ {X} Q $ | ||
+ | is called the Lie derivative of the geometric object $ Q $ | ||
+ | with respect to $ X $( | ||
+ | cf. also [[Lie derivative|Lie derivative]]). Here it is assumed that transformations of $ M $ | ||
+ | induce transformations in the space of objects $ Q $ | ||
+ | in a natural way. | ||
− | + | In the special case when $ Q $ | |
+ | is a vector-valued function on $ M $, | ||
+ | its Lie derivative $ {\mathcal L} _ {X} Q $ | ||
+ | coincides with the derivative $ \partial _ {X} Q $ | ||
+ | of the function $ Q $ | ||
+ | in the direction of the vector field $ X $ | ||
+ | and is given by the formula | ||
− | + | $$ | |
+ | \left . ( {\mathcal L} _ {X} Q ) ( x) = \ | ||
+ | |||
+ | \frac{d}{dt} | ||
+ | Q \circ \phi _ {t} ( x) | ||
+ | \right | _ {t=} 0 ,\ x \in M , | ||
+ | $$ | ||
+ | |||
+ | where $ \phi _ {t} $ | ||
+ | is the one-parameter local transformation group on $ M $ | ||
+ | generated by $ X $, | ||
+ | or, in the local coordinates $ x ^ {i} $, | ||
+ | by the formula | ||
+ | |||
+ | $$ | ||
+ | {\mathcal L} _ {X} Q ( x ^ {i} ) = \ | ||
+ | \sum _ { j } X ^ {j} | ||
+ | |||
+ | \frac \partial {\partial x ^ {j} } | ||
+ | Q ( x ^ {i} ) , | ||
+ | $$ | ||
where | where | ||
− | + | $$ | |
+ | X = \sum _ { j } X ^ {j} ( x) | ||
− | + | \frac \partial {\partial x ^ {j} } | |
+ | . | ||
+ | $$ | ||
− | + | In the general case the definition of Lie differentiation consists in the following. Let $ W $ | |
+ | be a $ \mathop{\rm GL} ^ {k} ( n) $- | ||
+ | space, that is, a manifold with a fixed action of the general differential group $ \mathop{\rm GL} ^ {k} ( n) $ | ||
+ | of order $ k $( | ||
+ | the group of $ k $- | ||
+ | jets at the origin of diffeomorphisms $ \phi : \mathbf R ^ {n} \rightarrow \mathbf R ^ {n} $, | ||
+ | $ \phi ( 0) = 0 $). | ||
+ | Let $ Q : P ^ {k} M \rightarrow W $ | ||
+ | be a geometric object of order $ k $ | ||
+ | and type $ W $ | ||
+ | on an $ n $- | ||
+ | dimensional manifold $ M $, | ||
+ | regarded as a $ \mathop{\rm GL} ^ {k} ( n) $- | ||
+ | equivariant mapping of the principal $ \mathop{\rm GL} ^ {k} ( n) $- | ||
+ | bundle of coframes $ P ^ {k} M $ | ||
+ | of order $ k $ | ||
+ | on $ M $ | ||
+ | into $ W $. | ||
+ | The one-parameter local transformation group $ \phi _ {t} $ | ||
+ | on $ M $ | ||
+ | generated by a vector field $ X $ | ||
+ | on $ M $ | ||
+ | induces a one-parameter local transformation group $ \phi _ {t} ^ {(} k) $ | ||
+ | on the manifold of coframes $ P ^ {k} M $. | ||
+ | Its velocity field | ||
− | + | $$ | |
+ | X ^ {(} k) = \left . | ||
+ | \frac{d}{dt} | ||
− | + | \phi _ {t} ^ {(} k) \right | _ {t=} 0 | |
+ | $$ | ||
− | The | + | is called the complete lift of $ X $ |
+ | to $ P ^ {k} M $. | ||
+ | The Lie derivative of a geometric object $ Q $ | ||
+ | of type $ W $ | ||
+ | with respect to a vector field $ X $ | ||
+ | on $ M $ | ||
+ | is defined as the geometric object $ {\mathcal L} _ {X} Q $ | ||
+ | of type $ TW $( | ||
+ | where $ TW $ | ||
+ | is the tangent bundle of $ W $, | ||
+ | regarded in a natural way as a $ \mathop{\rm GL} ^ {k} ( n) $- | ||
+ | space), given by the formula | ||
− | + | $$ | |
+ | {\mathcal L} _ {X} Q = \left . | ||
+ | \frac{d}{dt} | ||
− | + | Q \circ \phi _ {t} ^ {(} k) \right | _ {t=} 0 . | |
+ | $$ | ||
− | + | The value of the Lie derivative $ {\mathcal L} _ {X} Q $ | |
+ | at a point $ p _ {k} \in P ^ {k} M $ | ||
+ | depends only on the $ 1 $- | ||
+ | jet of $ Q $ | ||
+ | at $ p _ {k} $, | ||
+ | and does so linearly, and on the value of $ X ^ {(} k) $ | ||
+ | at this point (or, equivalently, on the $ k $- | ||
+ | jet of $ X $ | ||
+ | at the corresponding point $ x \in M $). | ||
− | + | If the geometric object $ Q $ | |
+ | is linear, that is, the corresponding $ \mathop{\rm GL} ^ {k} ( n) $- | ||
+ | space $ W $ | ||
+ | is a vector space with linear action of $ \mathop{\rm GL} ^ {k} ( n) $, | ||
+ | then the tangent manifold $ TW $ | ||
+ | can in a natural way be identified with the direct product $ W \times W $, | ||
+ | and so the Lie derivative | ||
− | + | $$ | |
+ | {\mathcal L} _ {X} Q : P ^ {k} M \rightarrow T W = W \times W | ||
+ | $$ | ||
− | + | can be regarded as a pair of geometric objects of type $ W $. | |
+ | The first of these is $ Q $ | ||
+ | itself, and the second, which is usually identified with the Lie derivative of $ Q $, | ||
+ | is equal to the derivative $ \partial _ {X ^ {(} k) } Q $ | ||
+ | of $ Q $ | ||
+ | in the direction of the vector field $ X ^ {(} k) $: | ||
− | + | $$ | |
+ | {\mathcal L} _ {X} Q = ( Q , \partial _ {X ^ {(} k) } Q ) . | ||
+ | $$ | ||
− | + | Thus, the Lie derivative of a linear geometric object can be regarded as a geometric object of the same type as $ Q $. | |
− | + | Local coordinates $ x ^ {i} $ | |
+ | in the manifold $ M $ | ||
+ | determine local coordinates $ x ^ {i} , y _ {j} ^ {i} $ | ||
+ | in the manifold $ P ^ {1} M $ | ||
+ | of coframes of order 1: for $ \theta \in P ^ {1} M $ | ||
+ | one has | ||
+ | |||
+ | $$ | ||
+ | \theta = \sum _ { j } y _ {j} ^ {i} d x ^ {j} . | ||
+ | $$ | ||
+ | |||
+ | In these coordinates the Lie derivative of any geometric object $ Q = Q ( x ^ {i} , y _ {j} ^ {i)} $ | ||
+ | of order 1 (for example, a tensor field) in the direction of the vector field | ||
+ | |||
+ | $$ | ||
+ | X = \sum _ { j } X ^ {j} | ||
+ | \frac \partial {\partial x ^ {j} } | ||
+ | |||
+ | $$ | ||
is given by the formula | is given by the formula | ||
− | + | $$ | |
+ | ( {\mathcal L} _ {X} Q ) ( x ^ {i} , y _ {j} ^ {i} ) = \ | ||
+ | \sum _ { j } | ||
+ | \frac \partial {\partial x ^ {i} } | ||
+ | |||
+ | Q - \sum _ { i,j,l } | ||
+ | y _ {l} ^ {i} X _ {j} ^ {l} | ||
+ | \frac \partial {\partial y _ {j} ^ {i} } | ||
+ | Q , | ||
+ | $$ | ||
where | where | ||
− | + | $$ | |
+ | X _ {j} ^ {l} = | ||
+ | \frac \partial {\partial x ^ {j} } | ||
+ | X ^ {l} . | ||
+ | $$ | ||
A similar formula holds for the Lie derivative of a geometric object of arbitrary order. | A similar formula holds for the Lie derivative of a geometric object of arbitrary order. | ||
− | The Lie derivative | + | The Lie derivative $ {\mathcal L} _ {X} $ |
+ | in the space of differential forms on a manifold $ M $ | ||
+ | can be expressed in terms of the operator of exterior differentiation $ d $ | ||
+ | and the operator of interior multiplication $ i _ {X} $( | ||
+ | defined as the contraction of a vector field with a differential form) by means of the following homotopy formula: | ||
− | + | $$ | |
+ | {\mathcal L} _ {X} = d \circ i _ {X} + i _ {X} \circ d . | ||
+ | $$ | ||
− | Conversely, the operator of exterior differentiation | + | Conversely, the operator of exterior differentiation $ d $, |
+ | acting on a $ p $- | ||
+ | form $ \omega $, | ||
+ | can be expressed in terms of the Lie derivative by the formula | ||
− | + | $$ | |
+ | d \omega ( X _ {1} \dots X _ {p+} 1 ) = | ||
+ | $$ | ||
− | + | $$ | |
+ | = \ | ||
+ | \sum _ { i= } 1 ^ { p+ } 1 (- 1) ^ {i+} 1 {\mathcal L} _ {X _ {i} } \omega | ||
+ | ( X _ {1} \dots \widehat{X} _ {i} \dots X _ {p+} 1 ) + | ||
+ | $$ | ||
− | < | + | $$ |
+ | + | ||
+ | \sum _ {i < j } (- 1) ^ {i+} j \omega ( {\mathcal L} _ {X _ {i} } X _ {j} , X _ {1} \dots \widehat{X} _ {i} \dots \widehat{X} _ {j} \dots X _ {p+} 1 ) , | ||
+ | $$ | ||
− | where | + | where $ \widehat{ {}} $ |
+ | means that the corresponding symbol must be omitted, and the $ X _ {1} \dots X _ {p+} 1 $ | ||
+ | are vector fields. | ||
− | In contrast to [[Covariant differentiation|covariant differentiation]], which requires the introduction of a connection, the operation of Lie differentiation is determined by the structure of the differentiable manifold, and the Lie derivative of a geometric object | + | In contrast to [[Covariant differentiation|covariant differentiation]], which requires the introduction of a connection, the operation of Lie differentiation is determined by the structure of the differentiable manifold, and the Lie derivative of a geometric object $ Q $ |
+ | in the direction of a vector field $ X $ | ||
+ | is a concomitant of the geometric objects $ X $ | ||
+ | and $ Q $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> W. Slebodziński, "Sur les équations canonique de Hamilton" ''Bull. Cl. Sci. Acad. Roy. Belgique'' , '''17''' (1931) pp. 864–870</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> B.L. Laptev, "Lie differentiation" ''Progress in Math.'' , '''6''' (1970) pp. 229–269 ''Itogi. Nauk. Algebra Topol. Geom. 1965'' (1967) pp. 429–465</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> K. Yano, "The theory of Lie derivatives and its applications" , North-Holland (1957)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> S. Sternberg, "Lectures on differential geometry" , Prentice-Hall (1964)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> V.V. Vagner, "Theory of geometric objects and theory of finite and infinite continuous transformation groups" ''Dokl. Akad. Nauk SSSR'' , '''46''' (1945) pp. 347–349 (In Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> B.L. Laptev, "Lie derivative in a space of supporting elements" ''Trudy Sem. Vektor. Tenzor. Anal.'' , '''10''' (1956) pp. 227–248 (In Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> L.E. Evtushik, "The Lie derivative and differential field equations of a geometric object" ''Soviet Math. Dokl.'' , '''1''' (1960) pp. 687–690 ''Dokl. Akad. Nauk SSSR'' , '''132''' (1960) pp. 998–1001</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> R.S. Palais, "A definition of the exterior derivative in terms of Lie derivatives" ''Proc. Amer. Math. Soc.'' , '''5''' (1954) pp. 902–908</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> W. Slebodziński, "Sur les équations canonique de Hamilton" ''Bull. Cl. Sci. Acad. Roy. Belgique'' , '''17''' (1931) pp. 864–870</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> B.L. Laptev, "Lie differentiation" ''Progress in Math.'' , '''6''' (1970) pp. 229–269 ''Itogi. Nauk. Algebra Topol. Geom. 1965'' (1967) pp. 429–465</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> K. Yano, "The theory of Lie derivatives and its applications" , North-Holland (1957)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> S. Sternberg, "Lectures on differential geometry" , Prentice-Hall (1964)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> V.V. Vagner, "Theory of geometric objects and theory of finite and infinite continuous transformation groups" ''Dokl. Akad. Nauk SSSR'' , '''46''' (1945) pp. 347–349 (In Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> B.L. Laptev, "Lie derivative in a space of supporting elements" ''Trudy Sem. Vektor. Tenzor. Anal.'' , '''10''' (1956) pp. 227–248 (In Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> L.E. Evtushik, "The Lie derivative and differential field equations of a geometric object" ''Soviet Math. Dokl.'' , '''1''' (1960) pp. 687–690 ''Dokl. Akad. Nauk SSSR'' , '''132''' (1960) pp. 998–1001</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> R.S. Palais, "A definition of the exterior derivative in terms of Lie derivatives" ''Proc. Amer. Math. Soc.'' , '''5''' (1954) pp. 902–908</TD></TR></table> |
Latest revision as of 22:16, 5 June 2020
A natural operation on a differentiable manifold $ M $
that associates with a differentiable vector field $ X $
and a differentiable geometric object $ Q $
on $ M $(
cf. Geometric objects, theory of) a new geometric object $ {\mathcal L} _ {X} Q $,
which describes the rate of change of $ Q $
with respect to the one-parameter (local) transformation group $ \phi _ {t} $
of $ M $
generated by $ X $.
The geometric object $ {\mathcal L} _ {X} Q $
is called the Lie derivative of the geometric object $ Q $
with respect to $ X $(
cf. also Lie derivative). Here it is assumed that transformations of $ M $
induce transformations in the space of objects $ Q $
in a natural way.
In the special case when $ Q $ is a vector-valued function on $ M $, its Lie derivative $ {\mathcal L} _ {X} Q $ coincides with the derivative $ \partial _ {X} Q $ of the function $ Q $ in the direction of the vector field $ X $ and is given by the formula
$$ \left . ( {\mathcal L} _ {X} Q ) ( x) = \ \frac{d}{dt} Q \circ \phi _ {t} ( x) \right | _ {t=} 0 ,\ x \in M , $$
where $ \phi _ {t} $ is the one-parameter local transformation group on $ M $ generated by $ X $, or, in the local coordinates $ x ^ {i} $, by the formula
$$ {\mathcal L} _ {X} Q ( x ^ {i} ) = \ \sum _ { j } X ^ {j} \frac \partial {\partial x ^ {j} } Q ( x ^ {i} ) , $$
where
$$ X = \sum _ { j } X ^ {j} ( x) \frac \partial {\partial x ^ {j} } . $$
In the general case the definition of Lie differentiation consists in the following. Let $ W $ be a $ \mathop{\rm GL} ^ {k} ( n) $- space, that is, a manifold with a fixed action of the general differential group $ \mathop{\rm GL} ^ {k} ( n) $ of order $ k $( the group of $ k $- jets at the origin of diffeomorphisms $ \phi : \mathbf R ^ {n} \rightarrow \mathbf R ^ {n} $, $ \phi ( 0) = 0 $). Let $ Q : P ^ {k} M \rightarrow W $ be a geometric object of order $ k $ and type $ W $ on an $ n $- dimensional manifold $ M $, regarded as a $ \mathop{\rm GL} ^ {k} ( n) $- equivariant mapping of the principal $ \mathop{\rm GL} ^ {k} ( n) $- bundle of coframes $ P ^ {k} M $ of order $ k $ on $ M $ into $ W $. The one-parameter local transformation group $ \phi _ {t} $ on $ M $ generated by a vector field $ X $ on $ M $ induces a one-parameter local transformation group $ \phi _ {t} ^ {(} k) $ on the manifold of coframes $ P ^ {k} M $. Its velocity field
$$ X ^ {(} k) = \left . \frac{d}{dt} \phi _ {t} ^ {(} k) \right | _ {t=} 0 $$
is called the complete lift of $ X $ to $ P ^ {k} M $. The Lie derivative of a geometric object $ Q $ of type $ W $ with respect to a vector field $ X $ on $ M $ is defined as the geometric object $ {\mathcal L} _ {X} Q $ of type $ TW $( where $ TW $ is the tangent bundle of $ W $, regarded in a natural way as a $ \mathop{\rm GL} ^ {k} ( n) $- space), given by the formula
$$ {\mathcal L} _ {X} Q = \left . \frac{d}{dt} Q \circ \phi _ {t} ^ {(} k) \right | _ {t=} 0 . $$
The value of the Lie derivative $ {\mathcal L} _ {X} Q $ at a point $ p _ {k} \in P ^ {k} M $ depends only on the $ 1 $- jet of $ Q $ at $ p _ {k} $, and does so linearly, and on the value of $ X ^ {(} k) $ at this point (or, equivalently, on the $ k $- jet of $ X $ at the corresponding point $ x \in M $).
If the geometric object $ Q $ is linear, that is, the corresponding $ \mathop{\rm GL} ^ {k} ( n) $- space $ W $ is a vector space with linear action of $ \mathop{\rm GL} ^ {k} ( n) $, then the tangent manifold $ TW $ can in a natural way be identified with the direct product $ W \times W $, and so the Lie derivative
$$ {\mathcal L} _ {X} Q : P ^ {k} M \rightarrow T W = W \times W $$
can be regarded as a pair of geometric objects of type $ W $. The first of these is $ Q $ itself, and the second, which is usually identified with the Lie derivative of $ Q $, is equal to the derivative $ \partial _ {X ^ {(} k) } Q $ of $ Q $ in the direction of the vector field $ X ^ {(} k) $:
$$ {\mathcal L} _ {X} Q = ( Q , \partial _ {X ^ {(} k) } Q ) . $$
Thus, the Lie derivative of a linear geometric object can be regarded as a geometric object of the same type as $ Q $.
Local coordinates $ x ^ {i} $ in the manifold $ M $ determine local coordinates $ x ^ {i} , y _ {j} ^ {i} $ in the manifold $ P ^ {1} M $ of coframes of order 1: for $ \theta \in P ^ {1} M $ one has
$$ \theta = \sum _ { j } y _ {j} ^ {i} d x ^ {j} . $$
In these coordinates the Lie derivative of any geometric object $ Q = Q ( x ^ {i} , y _ {j} ^ {i)} $ of order 1 (for example, a tensor field) in the direction of the vector field
$$ X = \sum _ { j } X ^ {j} \frac \partial {\partial x ^ {j} } $$
is given by the formula
$$ ( {\mathcal L} _ {X} Q ) ( x ^ {i} , y _ {j} ^ {i} ) = \ \sum _ { j } \frac \partial {\partial x ^ {i} } Q - \sum _ { i,j,l } y _ {l} ^ {i} X _ {j} ^ {l} \frac \partial {\partial y _ {j} ^ {i} } Q , $$
where
$$ X _ {j} ^ {l} = \frac \partial {\partial x ^ {j} } X ^ {l} . $$
A similar formula holds for the Lie derivative of a geometric object of arbitrary order.
The Lie derivative $ {\mathcal L} _ {X} $ in the space of differential forms on a manifold $ M $ can be expressed in terms of the operator of exterior differentiation $ d $ and the operator of interior multiplication $ i _ {X} $( defined as the contraction of a vector field with a differential form) by means of the following homotopy formula:
$$ {\mathcal L} _ {X} = d \circ i _ {X} + i _ {X} \circ d . $$
Conversely, the operator of exterior differentiation $ d $, acting on a $ p $- form $ \omega $, can be expressed in terms of the Lie derivative by the formula
$$ d \omega ( X _ {1} \dots X _ {p+} 1 ) = $$
$$ = \ \sum _ { i= } 1 ^ { p+ } 1 (- 1) ^ {i+} 1 {\mathcal L} _ {X _ {i} } \omega ( X _ {1} \dots \widehat{X} _ {i} \dots X _ {p+} 1 ) + $$
$$ + \sum _ {i < j } (- 1) ^ {i+} j \omega ( {\mathcal L} _ {X _ {i} } X _ {j} , X _ {1} \dots \widehat{X} _ {i} \dots \widehat{X} _ {j} \dots X _ {p+} 1 ) , $$
where $ \widehat{ {}} $ means that the corresponding symbol must be omitted, and the $ X _ {1} \dots X _ {p+} 1 $ are vector fields.
In contrast to covariant differentiation, which requires the introduction of a connection, the operation of Lie differentiation is determined by the structure of the differentiable manifold, and the Lie derivative of a geometric object $ Q $ in the direction of a vector field $ X $ is a concomitant of the geometric objects $ X $ and $ Q $.
References
[1] | W. Slebodziński, "Sur les équations canonique de Hamilton" Bull. Cl. Sci. Acad. Roy. Belgique , 17 (1931) pp. 864–870 |
[2] | B.L. Laptev, "Lie differentiation" Progress in Math. , 6 (1970) pp. 229–269 Itogi. Nauk. Algebra Topol. Geom. 1965 (1967) pp. 429–465 |
[3] | K. Yano, "The theory of Lie derivatives and its applications" , North-Holland (1957) |
[4] | S. Sternberg, "Lectures on differential geometry" , Prentice-Hall (1964) |
[5] | V.V. Vagner, "Theory of geometric objects and theory of finite and infinite continuous transformation groups" Dokl. Akad. Nauk SSSR , 46 (1945) pp. 347–349 (In Russian) |
[6] | B.L. Laptev, "Lie derivative in a space of supporting elements" Trudy Sem. Vektor. Tenzor. Anal. , 10 (1956) pp. 227–248 (In Russian) |
[7] | L.E. Evtushik, "The Lie derivative and differential field equations of a geometric object" Soviet Math. Dokl. , 1 (1960) pp. 687–690 Dokl. Akad. Nauk SSSR , 132 (1960) pp. 998–1001 |
[8] | R.S. Palais, "A definition of the exterior derivative in terms of Lie derivatives" Proc. Amer. Math. Soc. , 5 (1954) pp. 902–908 |
Lie differentiation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lie_differentiation&oldid=14570