Namespaces
Variants
Actions

Difference between revisions of "Perfectly-normal space"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(details)
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
A [[Normal space|normal space]] in which every closed subset is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072120/p0721201.png" />-set (cf. [[Set of type F sigma(G delta)|Set of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072120/p0721202.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072120/p0721203.png" />)]]).
+
{{TEX|done}}
 +
A [[normal space]] in which every closed subset is a $G_\delta$-set (cf. [[Set of type F sigma(G delta)|Set of type $F_\sigma$ ($G_\delta$)]]).
  
====Comments====
+
====References====
 +
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  E. Čech,  "Topological spaces" , Interscience  (1966)  pp. 532</TD></TR>
 +
</table>
  
 
+
[[Category:General topology]]
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  E. Čech,  "Topological spaces" , Interscience  (1966)  pp. 532</TD></TR></table>
 

Latest revision as of 09:30, 16 April 2023

A normal space in which every closed subset is a $G_\delta$-set (cf. Set of type $F_\sigma$ ($G_\delta$)).

References

[a1] E. Čech, "Topological spaces" , Interscience (1966) pp. 532
How to Cite This Entry:
Perfectly-normal space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Perfectly-normal_space&oldid=14531