Difference between revisions of "Pseudo-arc"
(Importing text file) |
(TeX) |
||
Line 1: | Line 1: | ||
+ | {{TEX|done}} | ||
A hereditarily-indecomposable [[Snake-like continuum|snake-like continuum]] which contains more than one point. | A hereditarily-indecomposable [[Snake-like continuum|snake-like continuum]] which contains more than one point. | ||
Line 4: | Line 5: | ||
====Comments==== | ====Comments==== | ||
− | One speaks of "the" pseudo-arc, since any two are homeomorphic [[#References|[a2]]]. Like the arc | + | One speaks of "the" pseudo-arc, since any two are homeomorphic [[#References|[a2]]]. Like the arc $[0,1]$, the pseudo-arc is homeomorphic to each of its non-degenerate subcontinua [[#References|[a7]]]. Yet, like the circle, it is homogeneous [[#References|[a1]]]. Its unique feature — necessarily unique — is that "almost-all continua are pseudo-arcs" ; more precisely, in the [[Hyperspace|hyperspace]] of subcontinua of an $n$-cell for $n\geq2$, the pseudo-arcs form a residual set [[#References|[a3]]]. All non-degenerate homogeneous snake-like continua are pseudo-arcs [[#References|[a4]]]. Simpler proofs of the fundamental properties, and some generalizations, are developed in [[#References|[a5]]], [[#References|[a6]]], [[#References|[a8]]]. |
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R.H. Bing, "A homogeneous indecomposable plane continuum" ''Duke Math. J.'' , '''15''' (1948) pp. 729–742</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R.H. Bing, "On snake-like continua" ''Duke Math. J.'' , '''18''' (1951) pp. 853–863</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> R.H. Bing, "Concerning hereditarily indecomposable continua" ''Pacific J. Math.'' , '''1''' (1951) pp. 43–51</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> R.H. Bing, "Each homogeneous nondegenerate chainable continuum is a pseudo-arc" ''Proc. Amer. Math. Soc.'' , '''10''' (1959) pp. 345–346</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> J. Krasinkiewicz, "Mapping properties of hereditarily indecomposable continua" ''Houston J. Math.'' , '''8''' (1982) pp. 507–516</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> J. Krasinkiewicz, P. Minc, "Mappings onto indecomposable continua" ''Bull. Acad. Polon. Sci.'' , '''25''' (1977) pp. 675–680</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> E.E. Moïse, "An indecomposable plane continuum which is homeomorphic to each of its non-degenerate subcontinua" ''Trans. Amer. Math. Soc.'' , '''63''' (1948) pp. 581–594</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> L. Oversteegen, E. Tymchatyn, "On hereditarily indecomposable compacta" H. Toruńczyk (ed.) S. Jackowski (ed.) S. Spiez (ed.) , ''Geometric & Algebraic Topology'' , ''Banach Center Publ.'' , '''18''' , PWN (1986) pp. 407–417</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R.H. Bing, "A homogeneous indecomposable plane continuum" ''Duke Math. J.'' , '''15''' (1948) pp. 729–742</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R.H. Bing, "On snake-like continua" ''Duke Math. J.'' , '''18''' (1951) pp. 853–863</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> R.H. Bing, "Concerning hereditarily indecomposable continua" ''Pacific J. Math.'' , '''1''' (1951) pp. 43–51</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> R.H. Bing, "Each homogeneous nondegenerate chainable continuum is a pseudo-arc" ''Proc. Amer. Math. Soc.'' , '''10''' (1959) pp. 345–346</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> J. Krasinkiewicz, "Mapping properties of hereditarily indecomposable continua" ''Houston J. Math.'' , '''8''' (1982) pp. 507–516</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> J. Krasinkiewicz, P. Minc, "Mappings onto indecomposable continua" ''Bull. Acad. Polon. Sci.'' , '''25''' (1977) pp. 675–680</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> E.E. Moïse, "An indecomposable plane continuum which is homeomorphic to each of its non-degenerate subcontinua" ''Trans. Amer. Math. Soc.'' , '''63''' (1948) pp. 581–594</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> L. Oversteegen, E. Tymchatyn, "On hereditarily indecomposable compacta" H. Toruńczyk (ed.) S. Jackowski (ed.) S. Spiez (ed.) , ''Geometric & Algebraic Topology'' , ''Banach Center Publ.'' , '''18''' , PWN (1986) pp. 407–417</TD></TR></table> |
Latest revision as of 12:26, 12 April 2014
A hereditarily-indecomposable snake-like continuum which contains more than one point.
Comments
One speaks of "the" pseudo-arc, since any two are homeomorphic [a2]. Like the arc $[0,1]$, the pseudo-arc is homeomorphic to each of its non-degenerate subcontinua [a7]. Yet, like the circle, it is homogeneous [a1]. Its unique feature — necessarily unique — is that "almost-all continua are pseudo-arcs" ; more precisely, in the hyperspace of subcontinua of an $n$-cell for $n\geq2$, the pseudo-arcs form a residual set [a3]. All non-degenerate homogeneous snake-like continua are pseudo-arcs [a4]. Simpler proofs of the fundamental properties, and some generalizations, are developed in [a5], [a6], [a8].
References
[a1] | R.H. Bing, "A homogeneous indecomposable plane continuum" Duke Math. J. , 15 (1948) pp. 729–742 |
[a2] | R.H. Bing, "On snake-like continua" Duke Math. J. , 18 (1951) pp. 853–863 |
[a3] | R.H. Bing, "Concerning hereditarily indecomposable continua" Pacific J. Math. , 1 (1951) pp. 43–51 |
[a4] | R.H. Bing, "Each homogeneous nondegenerate chainable continuum is a pseudo-arc" Proc. Amer. Math. Soc. , 10 (1959) pp. 345–346 |
[a5] | J. Krasinkiewicz, "Mapping properties of hereditarily indecomposable continua" Houston J. Math. , 8 (1982) pp. 507–516 |
[a6] | J. Krasinkiewicz, P. Minc, "Mappings onto indecomposable continua" Bull. Acad. Polon. Sci. , 25 (1977) pp. 675–680 |
[a7] | E.E. Moïse, "An indecomposable plane continuum which is homeomorphic to each of its non-degenerate subcontinua" Trans. Amer. Math. Soc. , 63 (1948) pp. 581–594 |
[a8] | L. Oversteegen, E. Tymchatyn, "On hereditarily indecomposable compacta" H. Toruńczyk (ed.) S. Jackowski (ed.) S. Spiez (ed.) , Geometric & Algebraic Topology , Banach Center Publ. , 18 , PWN (1986) pp. 407–417 |
Pseudo-arc. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pseudo-arc&oldid=14512