Namespaces
Variants
Actions

Difference between revisions of "Regular p-group"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A [[P-group|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r0807702.png" />-group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r0807703.png" /> such that for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r0807704.png" /> and any integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r0807705.png" /> an equality
+
<!--
 +
r0807702.png
 +
$#A+1 = 33 n = 0
 +
$#C+1 = 33 : ~/encyclopedia/old_files/data/R080/R.0800770 Regular \BMI p\EMI\AAhgroup
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r0807706.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
holds, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r0807707.png" /> are elements of the [[Commutator subgroup|commutator subgroup]] of the subgroup generated by the elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r0807708.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r0807709.png" />. Subgroups and quotient groups of a regular <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077010.png" />-group are regular. A finite <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077011.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077012.png" /> is regular if and only if for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077013.png" />,
+
A [[P-group| $  p $-
 +
group]]  $  G $
 +
such that for all $  a , b \in G $
 +
and any integer  $  n = p  ^  \alpha  $
 +
an equality
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077014.png" /></td> </tr></table>
+
$$
 +
( a b )  ^ {n}  = a  ^ {n} b  ^ {n} s _ {1}  ^ {n} \dots s _ {t}  ^ {n}
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077015.png" /> is an element of the commutator subgroup of the subgroup generated by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077016.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077017.png" />.
+
holds, where $  s _ {1} \dots s _ {t} $
 +
are elements of the [[Commutator subgroup|commutator subgroup]] of the subgroup generated by the elements  $  a $
 +
and  $  b $.  
 +
Subgroups and quotient groups of a regular  $  p $-
 +
group are regular. A finite  $  p $-
 +
group  $  G $
 +
is regular if and only if for all  $  a , b \in G $,
  
The elements of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077019.png" />, in a regular <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077020.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077021.png" /> form a [[Characteristic subgroup|characteristic subgroup]], <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077022.png" />, and the elements of order at most <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077023.png" /> form a [[Fully-characteristic subgroup|fully-characteristic subgroup]], <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077024.png" />.
+
$$
 +
a ^ {p} b  ^ {p}  = ( a b )  ^ {p} s  ^ {p} ,
 +
$$
  
Examples of regular <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077025.png" />-groups are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077026.png" />-groups of nilpotency class at most <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077027.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077028.png" />-groups of order at most <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077029.png" />. For any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077030.png" />, there is a non-regular <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077031.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077032.png" /> of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077033.png" /> (it is isomorphic to the [[Wreath product|wreath product]] of the cyclic group of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077034.png" /> with itself).
+
where  $  s $
 +
is an element of the commutator subgroup of the subgroup generated by  $  a $
 +
and  $  b $.
 +
 
 +
The elements of the form  $  a ^ {p  ^  \alpha  } $,
 +
$  a \in G $,
 +
in a regular  $  p $-
 +
group  $  G $
 +
form a [[Characteristic subgroup|characteristic subgroup]],  $  C  ^  \alpha  ( G) $,
 +
and the elements of order at most  $  p  ^  \alpha  $
 +
form a [[Fully-characteristic subgroup|fully-characteristic subgroup]],  $  C _  \alpha  ( G) $.
 +
 
 +
Examples of regular $  p $-
 +
groups are $  p $-
 +
groups of nilpotency class at most $  p - 1 $,  
 +
and $  p $-
 +
groups of order at most $  p  ^ {p} $.  
 +
For any $  p $,  
 +
there is a non-regular $  p $-
 +
group $  S ( p  ^ {2} ) $
 +
of order $  p  ^ {2} $(
 +
it is isomorphic to the [[Wreath product|wreath product]] of the cyclic group of order $  p $
 +
with itself).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  M. Hall,  "Group theory" , Macmillan  (1959)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  M. Hall,  "Group theory" , Macmillan  (1959)</TD></TR></table>

Latest revision as of 08:10, 6 June 2020


A $ p $- group $ G $ such that for all $ a , b \in G $ and any integer $ n = p ^ \alpha $ an equality

$$ ( a b ) ^ {n} = a ^ {n} b ^ {n} s _ {1} ^ {n} \dots s _ {t} ^ {n} $$

holds, where $ s _ {1} \dots s _ {t} $ are elements of the commutator subgroup of the subgroup generated by the elements $ a $ and $ b $. Subgroups and quotient groups of a regular $ p $- group are regular. A finite $ p $- group $ G $ is regular if and only if for all $ a , b \in G $,

$$ a ^ {p} b ^ {p} = ( a b ) ^ {p} s ^ {p} , $$

where $ s $ is an element of the commutator subgroup of the subgroup generated by $ a $ and $ b $.

The elements of the form $ a ^ {p ^ \alpha } $, $ a \in G $, in a regular $ p $- group $ G $ form a characteristic subgroup, $ C ^ \alpha ( G) $, and the elements of order at most $ p ^ \alpha $ form a fully-characteristic subgroup, $ C _ \alpha ( G) $.

Examples of regular $ p $- groups are $ p $- groups of nilpotency class at most $ p - 1 $, and $ p $- groups of order at most $ p ^ {p} $. For any $ p $, there is a non-regular $ p $- group $ S ( p ^ {2} ) $ of order $ p ^ {2} $( it is isomorphic to the wreath product of the cyclic group of order $ p $ with itself).

References

[1] M. Hall, "Group theory" , Macmillan (1959)
How to Cite This Entry:
Regular p-group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Regular_p-group&oldid=14502
This article was adapted from an original article by N.N. Vil'yams (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article