Difference between revisions of "Exterior product"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | e0371301.png | ||
+ | $#A+1 = 58 n = 0 | ||
+ | $#C+1 = 58 : ~/encyclopedia/old_files/data/E037/E.0307130 Exterior product | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A fundamental operation in the [[Exterior algebra|exterior algebra]] of tensors defined on an $ n $- | |
+ | dimensional vector space $ V $ | ||
+ | over a field $ K $. | ||
− | + | Let $ e _ {1} \dots e _ {n} $ | |
+ | be a basis of $ V $, | ||
+ | and let $ a $ | ||
+ | and $ b $ | ||
+ | be $ p $- | ||
+ | and $ q $- | ||
+ | forms: | ||
− | + | $$ | |
+ | a = a ^ {i _ {1} \dots {i _ {p} } } | ||
+ | e _ {i _ {1} } \otimes \dots \otimes e _ {i _ {p} } , | ||
+ | $$ | ||
− | + | $$ | |
+ | b = b ^ {j _ {1} \dots {j _ {q} } } e _ {j _ {1} } \otimes \dots \otimes e _ {j _ {q} } . | ||
+ | $$ | ||
− | where | + | The exterior product of the forms $ a $ |
+ | and $ b $ | ||
+ | is the $ ( p + q) $- | ||
+ | form $ c $ | ||
+ | obtained by [[Alternation|alternation]] of the tensor product $ a \otimes b $. | ||
+ | The form $ c $ | ||
+ | is denoted by $ a \wedge b $; | ||
+ | its coordinates are skew-symmetric: | ||
+ | |||
+ | $$ | ||
+ | c ^ {k _ {1} \dots k _ {p+ q } } = \ | ||
+ | |||
+ | \frac{1}{p! q! } | ||
+ | |||
+ | \delta _ {i _ {1} \dots i _ {p} j _ {1} \dots j _ {q} } ^ {k _ {1} \dots \dots \dots k _ {p+ q } } | ||
+ | a ^ {i _ {1} \dots i _ {p} } b ^ {j _ {1} \dots j _ {q} } , | ||
+ | $$ | ||
+ | |||
+ | where $ \delta _ {i _ {1} \dots j _ {q} } ^ {k _ {1} \dots k _ {p+} q } $ | ||
+ | are the components of the generalized [[Kronecker symbol|Kronecker symbol]]. The exterior product of covariant tensors is defined in a similar manner. | ||
The basic properties of the exterior product are listed below: | The basic properties of the exterior product are listed below: | ||
− | 1) | + | 1) $ ( ka) \wedge b = a \wedge ( kb) = k( a \wedge b) $, |
+ | $ k \in K $( | ||
+ | homogeneity); | ||
− | 2) | + | 2) $ ( a+ b) \wedge c = a \wedge c + b \wedge c $( |
+ | distributivity); | ||
− | 3) | + | 3) $ ( a \wedge b ) \wedge c = a \wedge ( b \wedge c) $( |
+ | associativity). | ||
− | 4) | + | 4) $ a \wedge b = (- 1) ^ {pq} b \wedge a $; |
+ | if the characteristic of $ K $ | ||
+ | is distinct from two, the equation $ a \wedge a = 0 $ | ||
+ | is valid for any form $ a $ | ||
+ | of odd valency. | ||
− | The exterior product of | + | The exterior product of $ s $ |
+ | vectors is said to be a decomposable $ s $- | ||
+ | vector. Any [[Poly-vector|poly-vector]] of dimension $ s $ | ||
+ | is a linear combination of decomposable $ s $- | ||
+ | vectors. The components of this combination are the ( $ s \times s $)- | ||
+ | minors of the ( $ n \times s $)- | ||
+ | matrix $ ( a _ {j} ^ {i} ) $, | ||
+ | $ 1 \leq i \leq n $, | ||
+ | $ 1 \leq j \leq s $, | ||
+ | of the coefficients of the vectors $ a _ {1} \dots a _ {s} $. | ||
+ | If $ s = n $ | ||
+ | their exterior product has the form | ||
− | + | $$ | |
+ | \alpha _ {n} = a _ {1} \wedge \dots \wedge a _ {n} = \ | ||
+ | \mathop{\rm det} ( a _ {j} ^ {i} ) e _ {1} \wedge \dots \wedge e _ {n} . | ||
+ | $$ | ||
− | Over fields of characteristic distinct from two, the equation | + | Over fields of characteristic distinct from two, the equation $ a _ {1} \wedge \dots \wedge a _ {n} = 0 $ |
+ | is necessary and sufficient for vectors $ a _ {1} \dots a _ {n} $ | ||
+ | to be linearly dependent. A non-zero decomposable $ s $- | ||
+ | vector $ \alpha _ {s} $ | ||
+ | defines in $ V $ | ||
+ | an $ s $- | ||
+ | dimensional oriented subspace $ A $, | ||
+ | parallel to the vectors $ a _ {1} \dots a _ {s} $, | ||
+ | and the [[Parallelotope|parallelotope]] in $ A $ | ||
+ | formed by the vectors $ a _ {1} \dots a _ {s} $ | ||
+ | issuing from one point, denoted by $ [ a _ {1} \dots a _ {s} ] $. | ||
+ | The conditions $ a \in A $ | ||
+ | and $ \alpha _ {s} \wedge a = 0 $ | ||
+ | are equivalent. | ||
For references see [[Exterior algebra|Exterior algebra]]. | For references see [[Exterior algebra|Exterior algebra]]. | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | Instead of exterior product the phrase "outer | + | Instead of exterior product the phrase "outer product" is sometimes used. The condition $ a \wedge b = (- 1) ^ {pq} b \wedge a $ |
+ | for $ a $ | ||
+ | of degree $ p $ | ||
+ | and $ b $ | ||
+ | of degree $ q $ | ||
+ | is sometimes called graded commutativity. |
Latest revision as of 19:38, 5 June 2020
A fundamental operation in the exterior algebra of tensors defined on an $ n $-
dimensional vector space $ V $
over a field $ K $.
Let $ e _ {1} \dots e _ {n} $ be a basis of $ V $, and let $ a $ and $ b $ be $ p $- and $ q $- forms:
$$ a = a ^ {i _ {1} \dots {i _ {p} } } e _ {i _ {1} } \otimes \dots \otimes e _ {i _ {p} } , $$
$$ b = b ^ {j _ {1} \dots {j _ {q} } } e _ {j _ {1} } \otimes \dots \otimes e _ {j _ {q} } . $$
The exterior product of the forms $ a $ and $ b $ is the $ ( p + q) $- form $ c $ obtained by alternation of the tensor product $ a \otimes b $. The form $ c $ is denoted by $ a \wedge b $; its coordinates are skew-symmetric:
$$ c ^ {k _ {1} \dots k _ {p+ q } } = \ \frac{1}{p! q! } \delta _ {i _ {1} \dots i _ {p} j _ {1} \dots j _ {q} } ^ {k _ {1} \dots \dots \dots k _ {p+ q } } a ^ {i _ {1} \dots i _ {p} } b ^ {j _ {1} \dots j _ {q} } , $$
where $ \delta _ {i _ {1} \dots j _ {q} } ^ {k _ {1} \dots k _ {p+} q } $ are the components of the generalized Kronecker symbol. The exterior product of covariant tensors is defined in a similar manner.
The basic properties of the exterior product are listed below:
1) $ ( ka) \wedge b = a \wedge ( kb) = k( a \wedge b) $, $ k \in K $( homogeneity);
2) $ ( a+ b) \wedge c = a \wedge c + b \wedge c $( distributivity);
3) $ ( a \wedge b ) \wedge c = a \wedge ( b \wedge c) $( associativity).
4) $ a \wedge b = (- 1) ^ {pq} b \wedge a $; if the characteristic of $ K $ is distinct from two, the equation $ a \wedge a = 0 $ is valid for any form $ a $ of odd valency.
The exterior product of $ s $ vectors is said to be a decomposable $ s $- vector. Any poly-vector of dimension $ s $ is a linear combination of decomposable $ s $- vectors. The components of this combination are the ( $ s \times s $)- minors of the ( $ n \times s $)- matrix $ ( a _ {j} ^ {i} ) $, $ 1 \leq i \leq n $, $ 1 \leq j \leq s $, of the coefficients of the vectors $ a _ {1} \dots a _ {s} $. If $ s = n $ their exterior product has the form
$$ \alpha _ {n} = a _ {1} \wedge \dots \wedge a _ {n} = \ \mathop{\rm det} ( a _ {j} ^ {i} ) e _ {1} \wedge \dots \wedge e _ {n} . $$
Over fields of characteristic distinct from two, the equation $ a _ {1} \wedge \dots \wedge a _ {n} = 0 $ is necessary and sufficient for vectors $ a _ {1} \dots a _ {n} $ to be linearly dependent. A non-zero decomposable $ s $- vector $ \alpha _ {s} $ defines in $ V $ an $ s $- dimensional oriented subspace $ A $, parallel to the vectors $ a _ {1} \dots a _ {s} $, and the parallelotope in $ A $ formed by the vectors $ a _ {1} \dots a _ {s} $ issuing from one point, denoted by $ [ a _ {1} \dots a _ {s} ] $. The conditions $ a \in A $ and $ \alpha _ {s} \wedge a = 0 $ are equivalent.
For references see Exterior algebra.
Comments
Instead of exterior product the phrase "outer product" is sometimes used. The condition $ a \wedge b = (- 1) ^ {pq} b \wedge a $ for $ a $ of degree $ p $ and $ b $ of degree $ q $ is sometimes called graded commutativity.
Exterior product. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Exterior_product&oldid=14457