Namespaces
Variants
Actions

Difference between revisions of "Maximum-modulus principle"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(→‎References: zbl link)
 
(2 intermediate revisions by one other user not shown)
Line 1: Line 1:
A theorem expressing one of the basic properties of the modulus of an [[Analytic function|analytic function]]. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m0631101.png" /> be a regular analytic, or holomorphic, function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m0631102.png" /> complex variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m0631103.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m0631104.png" />, defined on an (open) domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m0631105.png" /> of the complex space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m0631106.png" />, which is not a constant, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m0631107.png" />. The local formulation of the maximum-modulus principle asserts that the modulus of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m0631108.png" /> does not have a local maximum at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m0631109.png" />, that is, there is no neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m06311010.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m06311011.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m06311012.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m06311013.png" />. If in addition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m06311014.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m06311015.png" /> also cannot be a local minimum point of the modulus of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m06311016.png" />. An equivalent global formulation of the maximum-modulus principle is that, under the same conditions as above, the modulus of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m06311017.png" /> does not attain its least upper bound
+
{{TEX|done}}
 +
This principle is also called the maximum principle, see {{Cite|Bu}}.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m06311018.png" /></td> </tr></table>
+
A theorem expressing one of the basic properties of the modulus of an [[Analytic function|analytic function]]. Let $f(z)$ be a regular analytic, or holomorphic, function of $n$ complex variables $z=(z_1,\ldots,z_n)$, $n\geq1$, defined on an (open) domain $D$ of the complex space $\mathbb{C}^n$, which is not a constant, $f(z)\neq\textrm{const}$. The local formulation of the maximum-modulus principle asserts that the modulus of $f(z)$ does not have a local maximum at a point $z_0\in D$, that is, there is no neighbourhood $V(z_0)$ of $z_0$ for which $\lvert f(z)\rvert\leq\lvert f(z_0)\rvert$, $z\in V(z_0)$. If in addition $f(z_0)\neq 0$, then $z_0$ also cannot be a local minimum point of the modulus of $f(z)$. An equivalent global formulation of the maximum-modulus principle is that, under the same conditions as above, the modulus of $f(z)$ does not attain its least upper bound
  
at any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m06311019.png" />. Consequently, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m06311020.png" /> is continuous in a finite closed domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m06311021.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m06311022.png" /> can only be attained on the boundary of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m06311023.png" />. These formulations of the maximum-modulus principle still hold when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m06311024.png" /> is a holomorphic function on a connected complex (analytic) manifold, in particular, on a [[Riemann surface|Riemann surface]] or a Riemann domain (cf. [[Riemannian domain|Riemannian domain]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m06311025.png" />.
+
\[ M=\sup\{ \lvert f(z)\rvert : z\in D\}\]
  
The maximum-modulus principle has generalizations in several directions. First, instead of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m06311026.png" /> being holomorphic, it is sufficient to assume that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m06311027.png" /> is a (complex) [[Harmonic function|harmonic function]]. Another generalization is connected with the fact that for a holomorphic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m06311028.png" /> the modulus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m06311029.png" /> is a [[Logarithmically-subharmonic function|logarithmically-subharmonic function]]. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m06311030.png" /> is a bounded holomorphic function in a finite domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m06311031.png" /> and if
+
at any $z_0\in D$. Consequently, if $f(z)$ is continuous in a finite closed domain $D$, then $M$ can only be attained on the boundary of $D$. These formulations of the maximum-modulus principle still hold when $f(z)$ is a holomorphic function on a connected complex (analytic) manifold, in particular, on a [[Riemann surface|Riemann surface]] or a [[Riemannian domain|Riemann domain]] $D$.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m06311032.png" /></td> </tr></table>
+
The maximum-modulus principle has generalizations in several directions. First, instead of $f(z)$ being holomorphic, it is sufficient to assume that $f(z)=u(z)+iv(z)$ is a (complex) [[Harmonic function|harmonic function]]. Another generalization is connected with the fact that for a holomorphic function $f(z)$ the modulus $\lvert f(z)\rvert$ is a [[Logarithmically-subharmonic function|logarithmically-subharmonic function]]. If $f(z)$ is a bounded holomorphic function in a finite domain $D\subset \mathbb{C}^n$ and if
  
holds for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m06311033.png" />, except at some set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m06311034.png" /> of outer [[Capacity|capacity]] zero (in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m06311035.png" />), then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m06311036.png" /> everywhere in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m06311037.png" />. See also [[Two-constants theorem|Two-constants theorem]]; [[Phragmén–Lindelöf theorem|Phragmén–Lindelöf theorem]].
+
\[ \limsup \{ \lvert f(z)\rvert : z\to \zeta, z\in D\}\leq M\]
  
The maximum-modulus principle can also be generalized to holomorphic mappings. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m06311038.png" /> be a [[Holomorphic mapping|holomorphic mapping]] of an (open) domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m06311039.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m06311040.png" />, into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m06311041.png" />, that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m06311042.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m06311043.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m06311044.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m06311045.png" />, are holomorphic functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m06311046.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m06311047.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m06311048.png" /> is the Euclidean norm. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m06311049.png" /> does not attain a local maximum at any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063110/m06311050.png" />. The maximum-modulus principle is valid whenever the principle of preservation of domain is satisfied (cf. [[Preservation of domain, principle of|Preservation of domain, principle of]]).
+
holds for all $\zeta\in\partial D$, except at some set $E\subset \partial D$ of outer [[Capacity|capacity]] zero (in $\mathbb{R}^{2n}=\mathbb{C}^n$), then $\lvert f(z)\rvert\leq M$ everywhere in $D$. See also [[Two-constants theorem|Two-constants theorem]]; [[Phragmén–Lindelöf theorem|Phragmén–Lindelöf theorem]].
  
====References====
+
The maximum-modulus principle can also be generalized to holomorphic mappings. Let $f: D\to\mathbb{C}^n$ be a [[Holomorphic mapping|holomorphic mapping]] of an (open) domain $D\subset\mathbb{C}^n$, $n\geq 1$, into $\mathbb{C}^m$, that is, $f=(f_1,\ldots, f_m)$, $m\geq 1$, where $f_j$, $j=1,\ldots,m$, are holomorphic functions on $D$, $f(z)\neq\textrm{const}$ and $\lVert f\rVert=\sqrt{\lvert f_1\rvert^2+\cdots+\lvert f_m\rvert^2}$ is the Euclidean norm. Then $\lVert f(z)\rVert$ does not attain a local maximum at any $z_0\in D$. The maximum-modulus principle is valid whenever the [[Preservation of domain, principle of|principle of preservation of domain]] is satisfied.
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S. Stoilov,   "The theory of functions of a complex variable" , '''1–2''' , Moscow  (1962) (In Russian; translated from Rumanian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  V.S. Vladimirov,   "Methods of the theory of functions of several complex variables" , M.I.T.  (1966) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  B.V. Shabat,  "Introduction of complex analysis" , '''1–2''' , Moscow  (1976) (In Russian)</TD></TR></table>
 
 
 
 
 
 
 
====Comments====
 
This principle is also called the maximum principle, cf. [[#References|[a2]]].
 
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R.B. Burchel,  "An introduction to classical complex analysis" , '''1''' , Acad. Press  (1979)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  L.V. Ahlfors,  "Complex analysis" , McGraw-Hill (1979pp. 241</TD></TR></table>
+
{|
 +
|-
 +
|valign="top"|{{Ref|Ah}}||valign="top"| L.V. Ahlfors,  "Complex analysis" , McGraw-Hill (1979)  pp. 241 {{ZBL|0395.30001}}
 +
|-
 +
|valign="top"|{{Ref|Bu}}||valign="top"| R.B. Burchel,  "An introduction to classical complex analysis" , '''1''' , Acad. Press  (1979)
 +
|-
 +
|valign="top"|{{Ref|Sh}}||valign="top"| B.V. Shabat,  "Introduction of complex analysis" , '''1–2''' , Moscow  (1976)  (In Russian)
 +
|-
 +
|valign="top"|{{Ref|St}}||valign="top"| S. Stoilov,  "The theory of functions of a complex variable" , '''1–2''' , Moscow (1962(In Russian; translated from Rumanian)
 +
|-
 +
|valign="top"|{{Ref|Vl}}||valign="top"| V.S. Vladimirov,  "Methods of the theory of functions of several complex variables" , M.I.T. (1966)  (Translated from Russian)
 +
|-
 +
|}

Latest revision as of 06:23, 12 October 2023

This principle is also called the maximum principle, see [Bu].

A theorem expressing one of the basic properties of the modulus of an analytic function. Let $f(z)$ be a regular analytic, or holomorphic, function of $n$ complex variables $z=(z_1,\ldots,z_n)$, $n\geq1$, defined on an (open) domain $D$ of the complex space $\mathbb{C}^n$, which is not a constant, $f(z)\neq\textrm{const}$. The local formulation of the maximum-modulus principle asserts that the modulus of $f(z)$ does not have a local maximum at a point $z_0\in D$, that is, there is no neighbourhood $V(z_0)$ of $z_0$ for which $\lvert f(z)\rvert\leq\lvert f(z_0)\rvert$, $z\in V(z_0)$. If in addition $f(z_0)\neq 0$, then $z_0$ also cannot be a local minimum point of the modulus of $f(z)$. An equivalent global formulation of the maximum-modulus principle is that, under the same conditions as above, the modulus of $f(z)$ does not attain its least upper bound

\[ M=\sup\{ \lvert f(z)\rvert : z\in D\}\]

at any $z_0\in D$. Consequently, if $f(z)$ is continuous in a finite closed domain $D$, then $M$ can only be attained on the boundary of $D$. These formulations of the maximum-modulus principle still hold when $f(z)$ is a holomorphic function on a connected complex (analytic) manifold, in particular, on a Riemann surface or a Riemann domain $D$.

The maximum-modulus principle has generalizations in several directions. First, instead of $f(z)$ being holomorphic, it is sufficient to assume that $f(z)=u(z)+iv(z)$ is a (complex) harmonic function. Another generalization is connected with the fact that for a holomorphic function $f(z)$ the modulus $\lvert f(z)\rvert$ is a logarithmically-subharmonic function. If $f(z)$ is a bounded holomorphic function in a finite domain $D\subset \mathbb{C}^n$ and if

\[ \limsup \{ \lvert f(z)\rvert : z\to \zeta, z\in D\}\leq M\]

holds for all $\zeta\in\partial D$, except at some set $E\subset \partial D$ of outer capacity zero (in $\mathbb{R}^{2n}=\mathbb{C}^n$), then $\lvert f(z)\rvert\leq M$ everywhere in $D$. See also Two-constants theorem; Phragmén–Lindelöf theorem.

The maximum-modulus principle can also be generalized to holomorphic mappings. Let $f: D\to\mathbb{C}^n$ be a holomorphic mapping of an (open) domain $D\subset\mathbb{C}^n$, $n\geq 1$, into $\mathbb{C}^m$, that is, $f=(f_1,\ldots, f_m)$, $m\geq 1$, where $f_j$, $j=1,\ldots,m$, are holomorphic functions on $D$, $f(z)\neq\textrm{const}$ and $\lVert f\rVert=\sqrt{\lvert f_1\rvert^2+\cdots+\lvert f_m\rvert^2}$ is the Euclidean norm. Then $\lVert f(z)\rVert$ does not attain a local maximum at any $z_0\in D$. The maximum-modulus principle is valid whenever the principle of preservation of domain is satisfied.

References

[Ah] L.V. Ahlfors, "Complex analysis" , McGraw-Hill (1979) pp. 241 Zbl 0395.30001
[Bu] R.B. Burchel, "An introduction to classical complex analysis" , 1 , Acad. Press (1979)
[Sh] B.V. Shabat, "Introduction of complex analysis" , 1–2 , Moscow (1976) (In Russian)
[St] S. Stoilov, "The theory of functions of a complex variable" , 1–2 , Moscow (1962) (In Russian; translated from Rumanian)
[Vl] V.S. Vladimirov, "Methods of the theory of functions of several complex variables" , M.I.T. (1966) (Translated from Russian)
How to Cite This Entry:
Maximum-modulus principle. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximum-modulus_principle&oldid=14366
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article