Namespaces
Variants
Actions

Difference between revisions of "Sectional curvature"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(details)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
The [[Riemannian curvature|Riemannian curvature]] of a differentiable Riemannian manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083750/s0837501.png" /> at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083750/s0837502.png" /> in the direction of a two-dimensional plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083750/s0837503.png" /> (in the direction of the bivector that defines <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083750/s0837504.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083750/s0837505.png" />).
+
{{TEX|done}}
 
+
The [[Riemannian curvature]] of a differentiable [[Riemannian manifold]] $M$ at a point $p$ in the direction of a two-dimensional plane $\alpha$ (in the direction of the bivector that defines $\alpha$ at $p\in M$).
 
 
 
 
====Comments====
 
 
 
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  W. Klingenberg,  "Riemannian geometry" , de Gruyter  (1982)  (Translated from German)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  W. Klingenberg,  "Riemannian geometry" , de Gruyter  (1982)  (Translated from German)</TD></TR>
 +
</table>

Latest revision as of 07:57, 16 April 2023

The Riemannian curvature of a differentiable Riemannian manifold $M$ at a point $p$ in the direction of a two-dimensional plane $\alpha$ (in the direction of the bivector that defines $\alpha$ at $p\in M$).

References

[a1] W. Klingenberg, "Riemannian geometry" , de Gruyter (1982) (Translated from German)
How to Cite This Entry:
Sectional curvature. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Sectional_curvature&oldid=14275
This article was adapted from an original article by L.A. Sidorov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article