Difference between revisions of "Andersen theorem"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | a1105901.png | ||
+ | $#A+1 = 17 n = 0 | ||
+ | $#C+1 = 17 : ~/encyclopedia/old_files/data/A110/A.1100590 Andersen theorem | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A result in the theory of fluctuations in random walks (cf. [[Random walk|Random walk]]). Let $ ( X _ {n} ) _ {1} ^ \infty $ | |
+ | be independent random variables with the same distribution (cf. [[Random variable|Random variable]]), and let $ S _ {0} = 0 $, | ||
+ | $ S _ {k} = X _ {1} + \dots + X _ {k} $, | ||
+ | $ k \in \mathbf N $. | ||
+ | Define | ||
− | + | $$ | |
+ | M _ {n} = \max ( S _ {0} \dots S _ {n} ) , m _ {n} = { \mathop{\rm min} } ( S _ {0} \dots S _ {n} ) , | ||
+ | $$ | ||
− | + | $$ | |
+ | L _ {n} = { \mathop{\rm min} } \left \{ k : {k = 0 \dots n, S _ {k} = M _ {n} } \right \} , | ||
+ | $$ | ||
− | + | $$ | |
+ | L _ {n} ^ \prime = \max \left \{ k : {k = 0 \dots n, S _ {k} = m _ {n} } \right \} , | ||
+ | $$ | ||
− | + | $$ | |
+ | N _ {n} = \sum _ {k = 1 } ^ { n } 1 \{ S _ {k} > 0 \} . | ||
+ | $$ | ||
− | + | Then (equivalence principle) for each $ n \in \mathbf N $ | |
+ | the pairs $ ( N _ {n} ,S _ {n} ) $, | ||
+ | $ ( L _ {n} ,S _ {n} ) $ | ||
+ | and $ ( n - L _ {n} ^ \prime ,S _ {n} ) $ | ||
+ | have the same distribution; in particular, $ N _ {n} $, | ||
+ | $ L _ {n} $ | ||
+ | and $ n - L _ {n} ^ \prime $ | ||
+ | have the same distribution. As a consequence one has | ||
+ | |||
+ | $$ | ||
+ | {\mathsf P} \{ N _ {n} = k \} = {\mathsf P} \{ N _ {k} = k \} {\mathsf P} \{ N _ {n - k } = 0 \} , | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | k = 1 \dots n . | ||
+ | $$ | ||
These results were first proved by E. Sparre Andersen [[#References|[a1]]], [[#References|[a2]]], [[#References|[a3]]]. They connect the [[Arcsine law|arcsine law]] for random walks to the arcsine law in [[Renewal theory|renewal theory]]. | These results were first proved by E. Sparre Andersen [[#References|[a1]]], [[#References|[a2]]], [[#References|[a3]]]. They connect the [[Arcsine law|arcsine law]] for random walks to the arcsine law in [[Renewal theory|renewal theory]]. | ||
Line 20: | Line 55: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E. Sparre Andersen, "On the number of positive sums of random variables" ''Skand. Aktuarietikskr.'', '''32''' (1949) pp. 27–36</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> E. Sparre Andersen, "On sums of symmetrically dependent random variables" ''Skand. Aktuarietikskr.'', '''36''' (1953) pp. 123–138</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> E. Sparre Andersen, "On the fluctuations of sums of random variables" ''Math. Scand.'', '''1''' (1953) pp. 263–285 (Also: 2 (1954), 195–223)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> N.H. Bingham, C.M. Goldie, J.L. Teugels, "Regular variation", ''Encycl. Math. Appl.'', '''27''', Cambridge Univ. Press (1989) (Edition: Second)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> N.G. de Bruijn, "Some algorithms for ordering a sequence of objects, with application to E. Sparre Andersen's principle of equivalence in mathematical statistics" ''Indagationes Mathematicae'', '''34''' : 1 (1972) pp. 1–10</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> W. Feller, [[Feller, "An introduction to probability theory and its applications"|"An introduction to probability theory and its applications"]], '''2''', Springer (1976) (Edition: Second)</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> A.W. Joseph, "An elementary proof of the principle of equivalence" ''J. London Math. Soc. (2)'', '''3''' (1971) pp. 101–102</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> F. Spitzer, "Principles of random walk", Springer (1976) (Edition: Second)</TD></TR></table> |
Latest revision as of 18:47, 5 April 2020
A result in the theory of fluctuations in random walks (cf. Random walk). Let $ ( X _ {n} ) _ {1} ^ \infty $
be independent random variables with the same distribution (cf. Random variable), and let $ S _ {0} = 0 $,
$ S _ {k} = X _ {1} + \dots + X _ {k} $,
$ k \in \mathbf N $.
Define
$$ M _ {n} = \max ( S _ {0} \dots S _ {n} ) , m _ {n} = { \mathop{\rm min} } ( S _ {0} \dots S _ {n} ) , $$
$$ L _ {n} = { \mathop{\rm min} } \left \{ k : {k = 0 \dots n, S _ {k} = M _ {n} } \right \} , $$
$$ L _ {n} ^ \prime = \max \left \{ k : {k = 0 \dots n, S _ {k} = m _ {n} } \right \} , $$
$$ N _ {n} = \sum _ {k = 1 } ^ { n } 1 \{ S _ {k} > 0 \} . $$
Then (equivalence principle) for each $ n \in \mathbf N $ the pairs $ ( N _ {n} ,S _ {n} ) $, $ ( L _ {n} ,S _ {n} ) $ and $ ( n - L _ {n} ^ \prime ,S _ {n} ) $ have the same distribution; in particular, $ N _ {n} $, $ L _ {n} $ and $ n - L _ {n} ^ \prime $ have the same distribution. As a consequence one has
$$ {\mathsf P} \{ N _ {n} = k \} = {\mathsf P} \{ N _ {k} = k \} {\mathsf P} \{ N _ {n - k } = 0 \} , $$
$$ k = 1 \dots n . $$
These results were first proved by E. Sparre Andersen [a1], [a2], [a3]. They connect the arcsine law for random walks to the arcsine law in renewal theory.
Nowadays there are brief proofs based on combinatorial properties of non-random sequences [a6], [a7]. The results can be generalized to random vectors with symmetric distributions [a2]. A comprehensive account for integer-valued random variables can be found in [a8]; a concise overview is given in [a4]. Related combinatorial results are discussed in [a5].
References
[a1] | E. Sparre Andersen, "On the number of positive sums of random variables" Skand. Aktuarietikskr., 32 (1949) pp. 27–36 |
[a2] | E. Sparre Andersen, "On sums of symmetrically dependent random variables" Skand. Aktuarietikskr., 36 (1953) pp. 123–138 |
[a3] | E. Sparre Andersen, "On the fluctuations of sums of random variables" Math. Scand., 1 (1953) pp. 263–285 (Also: 2 (1954), 195–223) |
[a4] | N.H. Bingham, C.M. Goldie, J.L. Teugels, "Regular variation", Encycl. Math. Appl., 27, Cambridge Univ. Press (1989) (Edition: Second) |
[a5] | N.G. de Bruijn, "Some algorithms for ordering a sequence of objects, with application to E. Sparre Andersen's principle of equivalence in mathematical statistics" Indagationes Mathematicae, 34 : 1 (1972) pp. 1–10 |
[a6] | W. Feller, "An introduction to probability theory and its applications", 2, Springer (1976) (Edition: Second) |
[a7] | A.W. Joseph, "An elementary proof of the principle of equivalence" J. London Math. Soc. (2), 3 (1971) pp. 101–102 |
[a8] | F. Spitzer, "Principles of random walk", Springer (1976) (Edition: Second) |
Andersen theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Andersen_theorem&oldid=14103