Namespaces
Variants
Actions

Difference between revisions of "Boltzmann equation, linearized"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
b0168301.png
 +
$#A+1 = 19 n = 0
 +
$#C+1 = 19 : ~/encyclopedia/old_files/data/B016/B.0106830 Boltzmann equation, linearized,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''in kinetic gas theory''
 
''in kinetic gas theory''
  
Line 5: Line 17:
 
This equation,
 
This equation,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016830/b0168301.png" /></td> </tr></table>
+
$$
 +
 
 +
\frac{\partial  \phi }{\partial  t }
 +
+
 +
\langle  c, \nabla _ {x} \phi \rangle  = \
 +
 
 +
\frac{1} \epsilon
 +
 
 +
L _ {0} ( \phi ),
 +
$$
  
 
is obtained from the [[Boltzmann equation|Boltzmann equation]]
 
is obtained from the [[Boltzmann equation|Boltzmann equation]]
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016830/b0168302.png" /></td> </tr></table>
+
$$
 +
 
 +
\frac{\partial  f }{\partial  t }
 +
+
 +
\langle c, \nabla _ {x} f\rangle  =
 +
\frac{1} \epsilon
 +
 
 +
L (f, f)
 +
$$
  
 
by substituting
 
by substituting
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016830/b0168303.png" /></td> </tr></table>
+
$$
 +
= \pi ^ {- 3/2 } e ^ {
 +
-c  ^ {2} } +
 +
\mu e ^ {-c  ^ {2} / 2 } \phi
 +
$$
  
and equating the terms in which the parameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016830/b0168304.png" /> appears in the first degree. The operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016830/b0168305.png" /> is said to be the linearized collision operator. The linearized Boltzmann equation gives a satisfactory description of the evolution of the distribution function only if
+
and equating the terms in which the parameter $  \mu $
 +
appears in the first degree. The operator $  L _ {0} $
 +
is said to be the linearized collision operator. The linearized Boltzmann equation gives a satisfactory description of the evolution of the distribution function only if
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016830/b0168306.png" /></td> </tr></table>
+
$$
 +
\sup _ { x,c,t } \
 +
| f(x, c, t) -
 +
\pi ^ {- 3/2 } e ^ {-c  ^ {2} } |
 +
\ll  1.
 +
$$
  
If certain very general assumptions are made, the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016830/b0168307.png" /> is non-positive, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016830/b0168308.png" />, and can be written as
+
If certain very general assumptions are made, the operator $  L _ {0} $
 +
is non-positive, $  \langle  \phi , L _ {0} \phi \rangle \leq  0 $,  
 +
and can be written as
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016830/b0168309.png" /></td> </tr></table>
+
$$
 +
L _ {0} ( \phi )  = \
 +
- \nu (c ) \phi + G \phi ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016830/b01683010.png" /> (which is sometimes called the collision frequency) is a multiplication operator acting on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016830/b01683011.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016830/b01683012.png" /> is a completely-continuous integral operator. The function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016830/b01683013.png" /> and the kernel of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016830/b01683014.png" /> have the following form for the hard-sphere model [[#References|[1]]]:
+
where $  \nu (c) $(
 +
which is sometimes called the collision frequency) is a multiplication operator acting on $  \phi $
 +
and $  G $
 +
is a completely-continuous integral operator. The function $  \nu (c) $
 +
and the kernel of $  G $
 +
have the following form for the hard-sphere model [[#References|[1]]]:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016830/b01683015.png" /></td> </tr></table>
+
$$
 +
\nu (c)  = \
 +
4 \pi  ^ {2}
 +
\left [
 +
{
 +
\frac{1}{2}
 +
}
 +
e ^ {- c  ^ {2} /2 } +
 +
\left ( | c | +
 +
{
 +
\frac{1}{2 | c | }
 +
} \right )
 +
\int\limits _ { 0 } ^ { {|c| }  }
 +
e ^ {- \alpha  ^ {2} } \
 +
d \alpha  \right ] ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016830/b01683016.png" /></td> </tr></table>
+
$$
 +
G (c, c  ^  \prime  )  =
 +
\frac{4 \pi }{| c - c  ^  \prime
 +
| }
 +
  \mathop{\rm exp} \left \{
 +
\frac{- | c - c  ^  \prime  |  ^ {2} }{4 }
 +
-
 +
\frac{| c |  ^ {2} - | c  ^  \prime  |  ^ {2} }{4 | c - c  ^  \prime  |  ^ {2} }
 +
  \right \} -
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016830/b01683017.png" /></td> </tr></table>
+
$$
 +
-  
 +
2 \pi | c - c  ^  \prime  |  \mathop{\rm exp}
 +
\left \{ -
 +
\frac{c  ^ {2} + c  ^  \prime2  }{2 }
 +
\right \}
 +
$$
  
The existence theorem for the solution of the Cauchy problem as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016830/b01683018.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016830/b01683019.png" /> was proved for the linearized Boltzmann equation, and the dispersion equation was studied. The equation is principally employed in the molecular acoustics of ideal gases. The equation yields correct values for the transfer coefficients (viscosity, thermal conduction, velocity of sound) and the Stokes–Kirchhoff law of ultra-sound absorption.
+
The existence theorem for the solution of the Cauchy problem as $  t \rightarrow \infty $
 +
and $  \epsilon \rightarrow 0 $
 +
was proved for the linearized Boltzmann equation, and the dispersion equation was studied. The equation is principally employed in the molecular acoustics of ideal gases. The equation yields correct values for the transfer coefficients (viscosity, thermal conduction, velocity of sound) and the Stokes–Kirchhoff law of ultra-sound absorption.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  T. Carleman,  "Problèmes mathématiques dans la théorie kinétique des gaz" , Mittag-Leffler Inst.  (1957)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A.A. Arsen'ev,  "The Cauchy problem for the linearized Boltzmann equation"  ''USSR Comput. Math. Math. Phys.'' , '''5''' :  5  (1965)  pp. 116–136  ''Zh. Vychisl. Mat. i Mat. Fiz.'' , '''5''' :  5  (1965)  pp. 864–882</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  T. Carleman,  "Problèmes mathématiques dans la théorie kinétique des gaz" , Mittag-Leffler Inst.  (1957)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A.A. Arsen'ev,  "The Cauchy problem for the linearized Boltzmann equation"  ''USSR Comput. Math. Math. Phys.'' , '''5''' :  5  (1965)  pp. 116–136  ''Zh. Vychisl. Mat. i Mat. Fiz.'' , '''5''' :  5  (1965)  pp. 864–882</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  C. Cercignani,  "Theory and application of the Boltzmann equation" , Scottish Acad. Press  (1975)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  C. Cercignani (ed.) , ''Kinetic theories and the Boltzmann equation'' , Springer  (1984)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  C. Cercignani,  "Theory and application of the Boltzmann equation" , Scottish Acad. Press  (1975)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  C. Cercignani (ed.) , ''Kinetic theories and the Boltzmann equation'' , Springer  (1984)</TD></TR></table>

Latest revision as of 10:59, 29 May 2020


in kinetic gas theory

A linear integro-differential equation which approximately describes the evolution of the one-particle distribution function of a sufficiently-rarefied gas without internal degrees of freedom for small deviations from equilibrium.

This equation,

$$ \frac{\partial \phi }{\partial t } + \langle c, \nabla _ {x} \phi \rangle = \ \frac{1} \epsilon L _ {0} ( \phi ), $$

is obtained from the Boltzmann equation

$$ \frac{\partial f }{\partial t } + \langle c, \nabla _ {x} f\rangle = \frac{1} \epsilon L (f, f) $$

by substituting

$$ f = \pi ^ {- 3/2 } e ^ { -c ^ {2} } + \mu e ^ {-c ^ {2} / 2 } \phi $$

and equating the terms in which the parameter $ \mu $ appears in the first degree. The operator $ L _ {0} $ is said to be the linearized collision operator. The linearized Boltzmann equation gives a satisfactory description of the evolution of the distribution function only if

$$ \sup _ { x,c,t } \ | f(x, c, t) - \pi ^ {- 3/2 } e ^ {-c ^ {2} } | \ll 1. $$

If certain very general assumptions are made, the operator $ L _ {0} $ is non-positive, $ \langle \phi , L _ {0} \phi \rangle \leq 0 $, and can be written as

$$ L _ {0} ( \phi ) = \ - \nu (c ) \phi + G \phi , $$

where $ \nu (c) $( which is sometimes called the collision frequency) is a multiplication operator acting on $ \phi $ and $ G $ is a completely-continuous integral operator. The function $ \nu (c) $ and the kernel of $ G $ have the following form for the hard-sphere model [1]:

$$ \nu (c) = \ 4 \pi ^ {2} \left [ { \frac{1}{2} } e ^ {- c ^ {2} /2 } + \left ( | c | + { \frac{1}{2 | c | } } \right ) \int\limits _ { 0 } ^ { {|c| } } e ^ {- \alpha ^ {2} } \ d \alpha \right ] , $$

$$ G (c, c ^ \prime ) = \frac{4 \pi }{| c - c ^ \prime | } \mathop{\rm exp} \left \{ \frac{- | c - c ^ \prime | ^ {2} }{4 } - \frac{| c | ^ {2} - | c ^ \prime | ^ {2} }{4 | c - c ^ \prime | ^ {2} } \right \} - $$

$$ - 2 \pi | c - c ^ \prime | \mathop{\rm exp} \left \{ - \frac{c ^ {2} + c ^ \prime2 }{2 } \right \} $$

The existence theorem for the solution of the Cauchy problem as $ t \rightarrow \infty $ and $ \epsilon \rightarrow 0 $ was proved for the linearized Boltzmann equation, and the dispersion equation was studied. The equation is principally employed in the molecular acoustics of ideal gases. The equation yields correct values for the transfer coefficients (viscosity, thermal conduction, velocity of sound) and the Stokes–Kirchhoff law of ultra-sound absorption.

References

[1] T. Carleman, "Problèmes mathématiques dans la théorie kinétique des gaz" , Mittag-Leffler Inst. (1957)
[2] A.A. Arsen'ev, "The Cauchy problem for the linearized Boltzmann equation" USSR Comput. Math. Math. Phys. , 5 : 5 (1965) pp. 116–136 Zh. Vychisl. Mat. i Mat. Fiz. , 5 : 5 (1965) pp. 864–882

Comments

References

[a1] C. Cercignani, "Theory and application of the Boltzmann equation" , Scottish Acad. Press (1975)
[a2] C. Cercignani (ed.) , Kinetic theories and the Boltzmann equation , Springer (1984)
How to Cite This Entry:
Boltzmann equation, linearized. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Boltzmann_equation,_linearized&oldid=13907
This article was adapted from an original article by A.A. Arsen'ev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article