Difference between revisions of "Fabry theorem"
(Importing text file) |
m (→References: zbl link) |
||
(5 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | Fabry's gap theorem | + | {{TEX|done}} |
+ | ==Fabry's gap theorem== | ||
− | + | If the exponents $\lambda_n$ in the power series | |
− | + | $$ f(z)=\sum_{n=1}^\infty a_nz^{\lambda_n},$$ | |
− | + | with radius of convergence $R$, $0<R<\infty$, satisfy the condition | |
− | + | $$\lim_{n\to\infty}\frac{n}{\lambda_n}=0,$$ | |
− | + | then the circle $\lvert z\rvert=R$ is a [[natural boundary]]: all points of the cicle are singular points for $f(z)$. The theorem can be generalized to Dirichlet series. | |
− | + | A converse to the theorem was established by George Pólya. If $\lim\inf \lambda_n/n$ is finite then there exists a power series with exponent sequence $p_n$, radius of convergence equal to 1, but for which the unit circle is not a natural boundary. | |
− | + | ==Fabry's quotient theorem== | |
− | + | If the coefficients in the power series | |
− | + | $$ f(z)=\sum_{n=0}^\infty a_nz^n,$$ | |
− | |||
− | |||
− | |||
− | |||
− | |||
+ | with unit radius of convergence, satisfy the condition | ||
+ | $$ \lim_{n\to \infty}\frac{a_n}{a_{n+1}}=s,$$ | ||
− | = | + | then $z=s$ is a singular point of $f(z)$. |
+ | These theorems were obtained by E. Fabry {{Cite|Fa}}. | ||
====References==== | ====References==== | ||
− | + | {| | |
+ | |- | ||
+ | |valign="top"|{{Ref|Bi}}|| valign="top"| L. Bieberbach, "Analytische Fortsetzung" , Springer (1955) | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Di}}|| valign="top"| P. Dienes, "The Taylor series" , Oxford Univ. Press & Dover (1957) | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Fa}}|| valign="top"| E. Fabry, "Sur les points singuliers d'une fonction donnée par son développement en série et l'impossibilité du prolongement analytique dans des cas très généraux" ''Ann. Sci. Ecole Norm. Sup.'' , '''13''' (1896) pp. 367–399 {{ZBL|27.0303.01}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|La}}|| valign="top"| E. Landau, "Darstellung und Begründung einiger neuerer Ergebnisse der Funktionentheorie" , ''Das Kontinuum und andere Monographien'' , Chelsea, reprint (1973) | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Le}}|| valign="top"| A.F. Leont'ev, "Exponential series" , Moscow (1976) (In Russian) | ||
+ | |- | ||
+ | |} |
Latest revision as of 18:23, 10 October 2023
Fabry's gap theorem
If the exponents $\lambda_n$ in the power series
$$ f(z)=\sum_{n=1}^\infty a_nz^{\lambda_n},$$
with radius of convergence $R$, $0<R<\infty$, satisfy the condition
$$\lim_{n\to\infty}\frac{n}{\lambda_n}=0,$$
then the circle $\lvert z\rvert=R$ is a natural boundary: all points of the cicle are singular points for $f(z)$. The theorem can be generalized to Dirichlet series.
A converse to the theorem was established by George Pólya. If $\lim\inf \lambda_n/n$ is finite then there exists a power series with exponent sequence $p_n$, radius of convergence equal to 1, but for which the unit circle is not a natural boundary.
Fabry's quotient theorem
If the coefficients in the power series
$$ f(z)=\sum_{n=0}^\infty a_nz^n,$$
with unit radius of convergence, satisfy the condition
$$ \lim_{n\to \infty}\frac{a_n}{a_{n+1}}=s,$$
then $z=s$ is a singular point of $f(z)$.
These theorems were obtained by E. Fabry [Fa].
References
[Bi] | L. Bieberbach, "Analytische Fortsetzung" , Springer (1955) |
[Di] | P. Dienes, "The Taylor series" , Oxford Univ. Press & Dover (1957) |
[Fa] | E. Fabry, "Sur les points singuliers d'une fonction donnée par son développement en série et l'impossibilité du prolongement analytique dans des cas très généraux" Ann. Sci. Ecole Norm. Sup. , 13 (1896) pp. 367–399 Zbl 27.0303.01 |
[La] | E. Landau, "Darstellung und Begründung einiger neuerer Ergebnisse der Funktionentheorie" , Das Kontinuum und andere Monographien , Chelsea, reprint (1973) |
[Le] | A.F. Leont'ev, "Exponential series" , Moscow (1976) (In Russian) |
Fabry theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Fabry_theorem&oldid=13775