Difference between revisions of "Buchstab identity"
(Importing text file) |
m (Richard Pinch moved page Bukhstab identity to Buchstab identity: More common term in the literature) |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
− | A form of the Sylvester [[ | + | A form of the Sylvester [[inclusion-and-exclusion principle]] specialized to sieve theory (cf. also [[Sieve method]]). Let $\mathcal{A}$ be a finite integer sequence and, for any integer $q$, denote by $\mathcal{A}_q$ the subsequence of elements of $\mathcal{A}$ that are multiples of $q$. Let $\mathcal{P}$ be a set of [[prime number]]s, and, for $z \ge 2$, let $P(z) = \prod_{p\in\mathcal{P},\,p< z} p$. Finally, let |
+ | $$ | ||
+ | S(\mathcal{A}, \mathcal{P} ,z) = \sharp \{ a \in \mathcal{A} \ : \ (a,P(z)) = 1 \} | ||
+ | $$ | ||
+ | denote the "sifting function" associated with $\mathcal{A}$ and $\mathcal{P}$. The Buchstab identity asserts that, for $2 \le z_1 \le z$, | ||
+ | \begin{equation}\label{eq:1} | ||
+ | S(\mathcal{A}_q, \mathcal{P} ,z) = S(\mathcal{A}_q, \mathcal{P} ,z_1) - \sum_{p\in \mathcal{P},\,z_1 \le p < z} S(\mathcal{A}_{pq}, \mathcal{P} ,p) \ . | ||
+ | \end{equation} | ||
− | + | The identity is useful for deriving a lower-bound sieve estimate from an upper bound sieve estimate (or vice versa) as follows. If the parameter $z_1$ is sufficiently small, then the quantity $S(\mathcal{A}_q, \mathcal{P} ,z_1)$ on the right-hand side of (a1) usually can be estimated asymptotically. Thus, if an upper bound for each of the terms $S(\mathcal{A}_{pq}, \mathcal{P} ,p)$ on the right-hand side of \eqref{eq:1} is known, then a lower bound for the sifting function on the left-hand side of \eqref{eq:1} can be deduced. | |
− | + | ====References==== | |
− | + | <table> | |
− | <table | + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Halberstam, H.-E. Richert, "Sieve methods" , Acad. Press (1974) {{ZBL|0298.10026}}</TD></TR> |
− | + | </table> | |
− | |||
− | + | {{TEX|done}} | |
− |
Latest revision as of 20:24, 21 September 2017
A form of the Sylvester inclusion-and-exclusion principle specialized to sieve theory (cf. also Sieve method). Let $\mathcal{A}$ be a finite integer sequence and, for any integer $q$, denote by $\mathcal{A}_q$ the subsequence of elements of $\mathcal{A}$ that are multiples of $q$. Let $\mathcal{P}$ be a set of prime numbers, and, for $z \ge 2$, let $P(z) = \prod_{p\in\mathcal{P},\,p< z} p$. Finally, let $$ S(\mathcal{A}, \mathcal{P} ,z) = \sharp \{ a \in \mathcal{A} \ : \ (a,P(z)) = 1 \} $$ denote the "sifting function" associated with $\mathcal{A}$ and $\mathcal{P}$. The Buchstab identity asserts that, for $2 \le z_1 \le z$, \begin{equation}\label{eq:1} S(\mathcal{A}_q, \mathcal{P} ,z) = S(\mathcal{A}_q, \mathcal{P} ,z_1) - \sum_{p\in \mathcal{P},\,z_1 \le p < z} S(\mathcal{A}_{pq}, \mathcal{P} ,p) \ . \end{equation}
The identity is useful for deriving a lower-bound sieve estimate from an upper bound sieve estimate (or vice versa) as follows. If the parameter $z_1$ is sufficiently small, then the quantity $S(\mathcal{A}_q, \mathcal{P} ,z_1)$ on the right-hand side of (a1) usually can be estimated asymptotically. Thus, if an upper bound for each of the terms $S(\mathcal{A}_{pq}, \mathcal{P} ,p)$ on the right-hand side of \eqref{eq:1} is known, then a lower bound for the sifting function on the left-hand side of \eqref{eq:1} can be deduced.
References
[a1] | H. Halberstam, H.-E. Richert, "Sieve methods" , Acad. Press (1974) Zbl 0298.10026 |
Buchstab identity. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Buchstab_identity&oldid=13771