Difference between revisions of "Lipschitz integral condition"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | l0597101.png | ||
+ | $#A+1 = 15 n = 0 | ||
+ | $#C+1 = 15 : ~/encyclopedia/old_files/data/L059/L.0509710 Lipschitz integral condition | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | for all | + | A restriction on the behaviour of increase of a function in an integral metric. A function $ f $ |
+ | in a space $ L _ {p} ( a , b ) $ | ||
+ | with $ p \geq 1 $ | ||
+ | satisfies the Lipschitz integral condition of order $ \alpha > 0 $ | ||
+ | on $ [ a, b ] $ | ||
+ | with constant $ M > 0 $ | ||
+ | if | ||
+ | |||
+ | $$ \tag{* } | ||
+ | \left \{ | ||
+ | \int\limits _ { a } ^ { b- } h | ||
+ | | f ( x + h ) - f ( x) | ^ {p} \ | ||
+ | d x | ||
+ | \right \} ^ {1/p} \leq M h ^ \alpha | ||
+ | $$ | ||
+ | |||
+ | for all $ h \in ( 0 , b - a ) $. | ||
+ | In this case one writes $ f \in \mathop{\rm Lip} _ {M} ( \alpha , p ) $, | ||
+ | $ f \in H _ {p} ^ \alpha ( M) $ | ||
+ | or $ f \in \mathop{\rm Lip} ( \alpha , p ) $, | ||
+ | $ f \in H _ {p} ^ \alpha $. | ||
+ | For the case of a periodic function (with period $ b - a $) | ||
+ | the Lipschitz integral condition is defined similarly, only in inequality (*) the upper limit of integration $ b - h $ | ||
+ | must be replaced by $ b $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Zygmund, "Trigonometric series" , '''1–2''' , Cambridge Univ. Press (1988)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S.M. Nikol'skii, "Approximation of functions of several variables and imbedding theorems" , Springer (1975) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> O.V. Besov, V.P. Il'in, S.M. Nikol'skii, "Integral representations of functions and imbedding theorems" , Wiley (1978) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Zygmund, "Trigonometric series" , '''1–2''' , Cambridge Univ. Press (1988)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S.M. Nikol'skii, "Approximation of functions of several variables and imbedding theorems" , Springer (1975) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> O.V. Besov, V.P. Il'in, S.M. Nikol'skii, "Integral representations of functions and imbedding theorems" , Wiley (1978) (Translated from Russian)</TD></TR></table> |
Latest revision as of 22:17, 5 June 2020
A restriction on the behaviour of increase of a function in an integral metric. A function $ f $
in a space $ L _ {p} ( a , b ) $
with $ p \geq 1 $
satisfies the Lipschitz integral condition of order $ \alpha > 0 $
on $ [ a, b ] $
with constant $ M > 0 $
if
$$ \tag{* } \left \{ \int\limits _ { a } ^ { b- } h | f ( x + h ) - f ( x) | ^ {p} \ d x \right \} ^ {1/p} \leq M h ^ \alpha $$
for all $ h \in ( 0 , b - a ) $. In this case one writes $ f \in \mathop{\rm Lip} _ {M} ( \alpha , p ) $, $ f \in H _ {p} ^ \alpha ( M) $ or $ f \in \mathop{\rm Lip} ( \alpha , p ) $, $ f \in H _ {p} ^ \alpha $. For the case of a periodic function (with period $ b - a $) the Lipschitz integral condition is defined similarly, only in inequality (*) the upper limit of integration $ b - h $ must be replaced by $ b $.
References
[1] | A. Zygmund, "Trigonometric series" , 1–2 , Cambridge Univ. Press (1988) |
[2] | S.M. Nikol'skii, "Approximation of functions of several variables and imbedding theorems" , Springer (1975) (Translated from Russian) |
[3] | O.V. Besov, V.P. Il'in, S.M. Nikol'skii, "Integral representations of functions and imbedding theorems" , Wiley (1978) (Translated from Russian) |
Lipschitz integral condition. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lipschitz_integral_condition&oldid=13660