Namespaces
Variants
Actions

Difference between revisions of "Steffensen interpolation formula"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A form of notation of the interpolation polynomial obtained from the [[Stirling interpolation formula|Stirling interpolation formula]] by means of the nodes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087620/s0876201.png" /> at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087620/s0876202.png" />:
+
<!--
 +
s0876201.png
 +
$#A+1 = 16 n = 0
 +
$#C+1 = 16 : ~/encyclopedia/old_files/data/S087/S.0807620 Steffensen interpolation formula
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087620/s0876203.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087620/s0876204.png" /></td> </tr></table>
+
A form of notation of the interpolation polynomial obtained from the [[Stirling interpolation formula|Stirling interpolation formula]] by means of the nodes  $  x _ {0} , x _ {0} + h, x _ {0} - h \dots x _ {0} + nh, x _ {0} - nh $
 +
at a point  $  x = x _ {0} + th $:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087620/s0876205.png" /></td> </tr></table>
+
$$
 +
L _ {2n} ( x _ {0} + th)  = \
 +
f _ {0} + tf _ {0} ^ { 1 } +
 +
\frac{t  ^ {2} }{2!}
 +
f _ {0} ^ { 2 } + \dots +
 +
$$
 +
 
 +
$$
 +
+
 +
 
 +
\frac{t( t  ^ {2} - 1) \dots [ t  ^ {2} - ( n- 1)  ^ {2} ] }{(}
 +
2n- 1)! f _ {0} ^ { 2n- 1 } +
 +
$$
 +
 
 +
$$
 +
+
 +
 
 +
\frac{t  ^ {2} ( t  ^ {2} - 1) \dots [ t  ^ {2} -( n- 1)  ^ {2} ] }{(}
 +
2n)! f _ {0} ^ { 2n } ,
 +
$$
  
 
using the relations
 
using the relations
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087620/s0876206.png" /></td> </tr></table>
+
$$
 +
f _ {0} ^ { 2k- 1 }  =
 +
\frac{1}{2}
 +
( f _ {1/2} ^ { 2k- 1 } + f _ {-} 1/2 ^ { 2k- 1 } ),\ \
 +
f _ {0} ^ { 2k }  = f _ {1/2} ^ { 2k- 1 } - f _ {-} 1/2 ^ { 2k- 1 } .
 +
$$
  
 
After collecting similar terms, the Steffensen interpolation formula can be written in the form
 
After collecting similar terms, the Steffensen interpolation formula can be written in the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087620/s0876207.png" /></td> </tr></table>
+
$$
 +
L _ {2n} ( x)  = L _ {2n} ( x _ {0} + th) =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087620/s0876208.png" /></td> </tr></table>
+
$$
 +
= \
 +
f _ {0} + t( t+
 +
\frac{1)}{2!}
 +
f _ {1/2} ^ { 1 }
 +
- t( t-
 +
\frac{1)}{2!}
 +
f _ {- 1/2 }  ^ { 1 } + \dots +
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087620/s0876209.png" /></td> </tr></table>
+
$$
 +
+
 +
\dots +
 +
\frac{t( t  ^ {2} - 1) \dots [ t  ^ {2} -
 +
( n- 1)  ^ {2} ]( t+ n) }{(}
 +
2n)! f _ {1/2} ^ { 2n- 1 } +
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087620/s08762010.png" /></td> </tr></table>
+
$$
 +
-  
 +
\frac{t( t  ^ {2} - 1) \dots [ t  ^ {2} - ( n- 1)  ^ {2} ]( t- n) }{(}
 +
2n)! f _ {-} 1/2 ^ { 2n- 1 } .
 +
$$
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  G.A. Korn,  T.M. Korn,  "Mathematical handbook for scientists and engineers" , McGraw-Hill  (1968)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  G.A. Korn,  T.M. Korn,  "Mathematical handbook for scientists and engineers" , McGraw-Hill  (1968)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
The central differences <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087620/s08762011.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087620/s08762012.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087620/s08762013.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087620/s08762014.png" />) are defined recursively from the (tabulated values) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087620/s08762015.png" /> by the formulas
+
The central differences $  f _ {i + 1/2 }  ^ { 2m+ 1 } $,  
 +
$  f _ {i} ^ { 2m } $(
 +
$  m = 0, ,1 \dots $
 +
$  i = \dots, - 1, 0, 1,\dots $)  
 +
are defined recursively from the (tabulated values) $  f _ {i} ^ { 0 } = f ( x _ {0} + i h ) $
 +
by the formulas
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087620/s08762016.png" /></td> </tr></table>
+
$$
 +
f _ {i+ 1/2 }  ^ { 2m+ 1 }  = \
 +
f _ {i+} 1 ^ { 2m } - f _ {i} ^ { 2m } ; \ \
 +
f _ {i} ^ { 2m }  = f _ {i+ 1/2 }  ^ { 2m- 1 } -
 +
f _ {i - 1/2 }  ^ { 2m- 1 } .
 +
$$
  
 
The Steffensen interpolation formula is also known as Everett's second formula.
 
The Steffensen interpolation formula is also known as Everett's second formula.

Latest revision as of 08:23, 6 June 2020


A form of notation of the interpolation polynomial obtained from the Stirling interpolation formula by means of the nodes $ x _ {0} , x _ {0} + h, x _ {0} - h \dots x _ {0} + nh, x _ {0} - nh $ at a point $ x = x _ {0} + th $:

$$ L _ {2n} ( x _ {0} + th) = \ f _ {0} + tf _ {0} ^ { 1 } + \frac{t ^ {2} }{2!} f _ {0} ^ { 2 } + \dots + $$

$$ + \frac{t( t ^ {2} - 1) \dots [ t ^ {2} - ( n- 1) ^ {2} ] }{(} 2n- 1)! f _ {0} ^ { 2n- 1 } + $$

$$ + \frac{t ^ {2} ( t ^ {2} - 1) \dots [ t ^ {2} -( n- 1) ^ {2} ] }{(} 2n)! f _ {0} ^ { 2n } , $$

using the relations

$$ f _ {0} ^ { 2k- 1 } = \frac{1}{2} ( f _ {1/2} ^ { 2k- 1 } + f _ {-} 1/2 ^ { 2k- 1 } ),\ \ f _ {0} ^ { 2k } = f _ {1/2} ^ { 2k- 1 } - f _ {-} 1/2 ^ { 2k- 1 } . $$

After collecting similar terms, the Steffensen interpolation formula can be written in the form

$$ L _ {2n} ( x) = L _ {2n} ( x _ {0} + th) = $$

$$ = \ f _ {0} + t( t+ \frac{1)}{2!} f _ {1/2} ^ { 1 } - t( t- \frac{1)}{2!} f _ {- 1/2 } ^ { 1 } + \dots + $$

$$ + \dots + \frac{t( t ^ {2} - 1) \dots [ t ^ {2} - ( n- 1) ^ {2} ]( t+ n) }{(} 2n)! f _ {1/2} ^ { 2n- 1 } + $$

$$ - \frac{t( t ^ {2} - 1) \dots [ t ^ {2} - ( n- 1) ^ {2} ]( t- n) }{(} 2n)! f _ {-} 1/2 ^ { 2n- 1 } . $$

References

[1] G.A. Korn, T.M. Korn, "Mathematical handbook for scientists and engineers" , McGraw-Hill (1968)

Comments

The central differences $ f _ {i + 1/2 } ^ { 2m+ 1 } $, $ f _ {i} ^ { 2m } $( $ m = 0, ,1 \dots $ $ i = \dots, - 1, 0, 1,\dots $) are defined recursively from the (tabulated values) $ f _ {i} ^ { 0 } = f ( x _ {0} + i h ) $ by the formulas

$$ f _ {i+ 1/2 } ^ { 2m+ 1 } = \ f _ {i+} 1 ^ { 2m } - f _ {i} ^ { 2m } ; \ \ f _ {i} ^ { 2m } = f _ {i+ 1/2 } ^ { 2m- 1 } - f _ {i - 1/2 } ^ { 2m- 1 } . $$

The Steffensen interpolation formula is also known as Everett's second formula.

References

[a1] F.B. Hildebrand, "Introduction to numerical analysis" , McGraw-Hill (1956) pp. 103–105
[a2] J.F. Steffensen, "Interpolation" , Chelsea, reprint (1950)
[a3] C.-E. Froberg, "Introduction to numerical analysis" , Addison-Wesley (1965) pp. 157
How to Cite This Entry:
Steffensen interpolation formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Steffensen_interpolation_formula&oldid=13445
This article was adapted from an original article by M.K. Samarin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article