Difference between revisions of "Hulthen potential"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | h1103501.png | ||
+ | $#A+1 = 6 n = 0 | ||
+ | $#C+1 = 6 : ~/encyclopedia/old_files/data/H110/H.1100350 Hulthen potential | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
The Hulthen potential [[#References|[a1]]] is given by | The Hulthen potential [[#References|[a1]]] is given by | ||
− | + | $$ \tag{a1 } | |
+ | V ( r ) = - { | ||
+ | \frac{z}{a} | ||
+ | } \cdot { | ||
+ | \frac{ { \mathop{\rm exp} } { { | ||
+ | \frac{- r }{a} | ||
+ | } } }{1 - { \mathop{\rm exp} } { { | ||
+ | \frac{- r }{a} | ||
+ | } } } | ||
+ | } , | ||
+ | $$ | ||
− | where | + | where $ a $ |
+ | is the screening parameter and z is a constant which is identified with the atomic number when the potential is used for atomic phenomena. | ||
− | The Hulthen potential is a short-range potential which behaves like a Coulomb potential for small values of | + | The Hulthen potential is a short-range potential which behaves like a Coulomb potential for small values of $ r $ |
+ | and decreases exponentially for large values of $ r $. | ||
+ | The Hulthen potential has been used in many branches of physics, such as nuclear physics [[#References|[a2]]], atomic physics [[#References|[a3]]], [[#References|[a4]]], solid state physics [[#References|[a5]]], and chemical physics [[#References|[a6]]]. The model of the three-dimensional [[Delta-function|delta-function]] could well be considered as a Hulthen potential with the radius of the force going down to zero [[#References|[a7]]]. The [[Schrödinger equation|Schrödinger equation]] for this potential can be solved in a closed form for $ s $ | ||
+ | waves. For $ l \neq 0 $, | ||
+ | a number of methods have been employed to find approximate solutions for the Schrödinger equation with the Hulthen potential [[#References|[a8]]], [[#References|[a9]]], [[#References|[a10]]], [[#References|[a11]]]. The Dirac equation with the Hulthen potential has also been studied using an algebraic approach [[#References|[a12]]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> L. Hulthen, ''Ark. Mat. Astron. Fys'' , '''28A''' (1942) pp. 5 (Also: 29B, 1)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> L. Hulthen, M. Sugawara, S. Flugge (ed.) , ''Handbuch der Physik'' , Springer (1957)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> T. Tietz, ''J. Chem. Phys.'' , '''35''' (1961) pp. 1917</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> C.S. Lam, Y.P. Varshni, ''Phys. Rev. A'' , '''4''' (1971) pp. 1875</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> A.A. Berezin, ''Phys. Status. Solidi (b)'' , '''50''' (1972) pp. 71</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> P. Pyykko, J. Jokisaari, ''Chem. Phys.'' , '''10''' (1975) pp. 293</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> A.A. Berezin, ''Phys. Rev. B'' , '''33''' (1986) pp. 2122</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> C.S. Lai, W.C. Lin, ''Phys. Lett. A'' , '''78''' (1980) pp. 335</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> S.H. Patil, ''J. Phys. A'' , '''17''' (1984) pp. 575</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top"> V.S. Popov, V.M. Wienberg, ''Phys. Lett. A'' , '''107''' (1985) pp. 371</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top"> B. Roy, R. Roychoudhury, ''J. Phys. A'' , '''20''' (1987) pp. 3051</TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top"> B. Roy, R. Roychoudhury, ''J. Phys. A'' , '''23''' (1990) pp. 5095</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> L. Hulthen, ''Ark. Mat. Astron. Fys'' , '''28A''' (1942) pp. 5 (Also: 29B, 1)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> L. Hulthen, M. Sugawara, S. Flugge (ed.) , ''Handbuch der Physik'' , Springer (1957)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> T. Tietz, ''J. Chem. Phys.'' , '''35''' (1961) pp. 1917</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> C.S. Lam, Y.P. Varshni, ''Phys. Rev. A'' , '''4''' (1971) pp. 1875</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> A.A. Berezin, ''Phys. Status. Solidi (b)'' , '''50''' (1972) pp. 71</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> P. Pyykko, J. Jokisaari, ''Chem. Phys.'' , '''10''' (1975) pp. 293</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> A.A. Berezin, ''Phys. Rev. B'' , '''33''' (1986) pp. 2122</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> C.S. Lai, W.C. Lin, ''Phys. Lett. A'' , '''78''' (1980) pp. 335</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> S.H. Patil, ''J. Phys. A'' , '''17''' (1984) pp. 575</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top"> V.S. Popov, V.M. Wienberg, ''Phys. Lett. A'' , '''107''' (1985) pp. 371</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top"> B. Roy, R. Roychoudhury, ''J. Phys. A'' , '''20''' (1987) pp. 3051</TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top"> B. Roy, R. Roychoudhury, ''J. Phys. A'' , '''23''' (1990) pp. 5095</TD></TR></table> |
Latest revision as of 22:11, 5 June 2020
The Hulthen potential [a1] is given by
$$ \tag{a1 } V ( r ) = - { \frac{z}{a} } \cdot { \frac{ { \mathop{\rm exp} } { { \frac{- r }{a} } } }{1 - { \mathop{\rm exp} } { { \frac{- r }{a} } } } } , $$
where $ a $ is the screening parameter and z is a constant which is identified with the atomic number when the potential is used for atomic phenomena.
The Hulthen potential is a short-range potential which behaves like a Coulomb potential for small values of $ r $ and decreases exponentially for large values of $ r $. The Hulthen potential has been used in many branches of physics, such as nuclear physics [a2], atomic physics [a3], [a4], solid state physics [a5], and chemical physics [a6]. The model of the three-dimensional delta-function could well be considered as a Hulthen potential with the radius of the force going down to zero [a7]. The Schrödinger equation for this potential can be solved in a closed form for $ s $ waves. For $ l \neq 0 $, a number of methods have been employed to find approximate solutions for the Schrödinger equation with the Hulthen potential [a8], [a9], [a10], [a11]. The Dirac equation with the Hulthen potential has also been studied using an algebraic approach [a12].
References
[a1] | L. Hulthen, Ark. Mat. Astron. Fys , 28A (1942) pp. 5 (Also: 29B, 1) |
[a2] | L. Hulthen, M. Sugawara, S. Flugge (ed.) , Handbuch der Physik , Springer (1957) |
[a3] | T. Tietz, J. Chem. Phys. , 35 (1961) pp. 1917 |
[a4] | C.S. Lam, Y.P. Varshni, Phys. Rev. A , 4 (1971) pp. 1875 |
[a5] | A.A. Berezin, Phys. Status. Solidi (b) , 50 (1972) pp. 71 |
[a6] | P. Pyykko, J. Jokisaari, Chem. Phys. , 10 (1975) pp. 293 |
[a7] | A.A. Berezin, Phys. Rev. B , 33 (1986) pp. 2122 |
[a8] | C.S. Lai, W.C. Lin, Phys. Lett. A , 78 (1980) pp. 335 |
[a9] | S.H. Patil, J. Phys. A , 17 (1984) pp. 575 |
[a10] | V.S. Popov, V.M. Wienberg, Phys. Lett. A , 107 (1985) pp. 371 |
[a11] | B. Roy, R. Roychoudhury, J. Phys. A , 20 (1987) pp. 3051 |
[a12] | B. Roy, R. Roychoudhury, J. Phys. A , 23 (1990) pp. 5095 |
Hulthen potential. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hulthen_potential&oldid=13270