Difference between revisions of "Zassenhaus formula"
(Importing text file) |
m (fixing subscripts and superscripts) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | z0991501.png | ||
+ | $#A+1 = 30 n = 0 | ||
+ | $#C+1 = 30 : ~/encyclopedia/old_files/data/Z099/Z.0909150 Zassenhaus formula | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | Let $ L( X, Y) $ | |
+ | be the (graded) free [[Lie algebra|Lie algebra]] on two generators over $ \mathbf Z $, | ||
+ | $ \mathop{\rm Ass} ( X, Y) $ | ||
+ | the graded free associative algebra on two generators over $ \mathbf Z $ | ||
+ | and $ { \mathop{\rm Ass} } hat ( X, Y) $ | ||
+ | its completion with respect to the augmentation ideal (where both $ X $ | ||
+ | and $ Y $ | ||
+ | have degree $ 1 $). | ||
+ | For each $ z \in \mathop{\rm Ass} ( X, Y) $ | ||
+ | without constant term, let $ e ^ {z} $ | ||
+ | denote the element | ||
− | + | $$ | |
+ | e ^ {z} = 1 + z + | ||
+ | \frac{z ^ {2} }{2!} | ||
+ | + | ||
+ | \frac{z ^ {3} }{3!} | ||
+ | + \dots | ||
+ | $$ | ||
− | + | of $ { \mathop{\rm Ass} } hat ( X, Y) $. | |
+ | Then there exist elements $ c _ {n} ( X, Y) $, | ||
+ | homogeneous of degree $ n $, | ||
+ | and $ R _ {m} ( X, Y) $, | ||
+ | homogeneous of degree $ m $ | ||
+ | in $ X $ | ||
+ | and of degree $ n $ | ||
+ | in $ Y $, | ||
+ | in $ \mathop{\rm Ass} ( X, Y) $ | ||
+ | which are Lie elements, i.e. they are in $ L( X, Y) \subset \mathop{\rm Ass} ( X, Y) $, | ||
+ | and which are such that | ||
− | + | $$ \tag{a1 } | |
+ | e ^ {X} e ^ {Y} = \prod _ {n \geq 1 } e ^ | ||
+ | {c _ {n} ( X, Y) / n! } , | ||
+ | $$ | ||
− | + | $$ \tag{a2 } | |
+ | e ^ {- X} e ^ {- Y} e ^ {X} e ^ {Y} = \prod _ { n= 1} ^ \infty \prod _ { m= 1} ^ \infty e ^ {R _ {m,n } ( X, Y)/m!n! } . | ||
+ | $$ | ||
− | + | Here the factors on the right-hand side are to be taken in the natural order for (a1), while in the case of (a2) the product is first taken over $ m $ | |
+ | and then over $ n $. | ||
+ | The $ c _ {n} ( X, Y) $ | ||
+ | are recursively defined by: | ||
− | These formulas find application in (combinatorial) group theory, algebraic topology and quantum theory, cf., e.g., [[#References|[a2]]]–[[#References|[a4]]]. For convergence results (for | + | $$ |
+ | c _ {n} ( X, Y) = | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | = \ | ||
+ | \left . | ||
+ | \frac{\partial ^ {n} }{\partial t ^ {n} } | ||
+ | \left ( e ^ {- t ^ {n- 1} c _ {n- 1} / ( n- 1)! } \dots e ^ {- t ^ {2} c _ {2} / 2! } | ||
+ | e ^ {- t c _ {1} } e ^ {tX} e ^ {tY} \right ) \right | _ {t= 0 } . | ||
+ | $$ | ||
+ | |||
+ | These formulas find application in (combinatorial) group theory, algebraic topology and quantum theory, cf., e.g., [[#References|[a2]]]–[[#References|[a4]]]. For convergence results (for $ X $ | ||
+ | and $ Y $ | ||
+ | elements of a Banach algebra) concerning formula (a1) and for more general formulas cf., e.g., [[#References|[a2]]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Zassenhaus, "Über Lie'schen Ringe mit Primzahlcharakteristik" ''Abh. Math. Sem. Univ. Hamburg'' , '''13''' (1940) pp. 1–100</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> M. Suzuki, "On the convergence of exponential operators - the Zassenhaus formula, BCH formula and systematic approximants" ''Comm. Math. Phys.'' , '''57''' (1977) pp. 193–200</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> W. Magnus, A. Karrass, B. Solitar, "Combinatorial group theory: presentations in terms of generators and relations" , Wiley (Interscience) (1966) pp. 412</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> H.J. Baues, "Commutator calculus and groups of homotopy classes" , Cambridge Univ. Press (1981)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Zassenhaus, "Über Lie'schen Ringe mit Primzahlcharakteristik" ''Abh. Math. Sem. Univ. Hamburg'' , '''13''' (1940) pp. 1–100</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> M. Suzuki, "On the convergence of exponential operators - the Zassenhaus formula, BCH formula and systematic approximants" ''Comm. Math. Phys.'' , '''57''' (1977) pp. 193–200</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> W. Magnus, A. Karrass, B. Solitar, "Combinatorial group theory: presentations in terms of generators and relations" , Wiley (Interscience) (1966) pp. 412</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> H.J. Baues, "Commutator calculus and groups of homotopy classes" , Cambridge Univ. Press (1981)</TD></TR></table> |
Latest revision as of 05:21, 19 January 2022
Let $ L( X, Y) $
be the (graded) free Lie algebra on two generators over $ \mathbf Z $,
$ \mathop{\rm Ass} ( X, Y) $
the graded free associative algebra on two generators over $ \mathbf Z $
and $ { \mathop{\rm Ass} } hat ( X, Y) $
its completion with respect to the augmentation ideal (where both $ X $
and $ Y $
have degree $ 1 $).
For each $ z \in \mathop{\rm Ass} ( X, Y) $
without constant term, let $ e ^ {z} $
denote the element
$$ e ^ {z} = 1 + z + \frac{z ^ {2} }{2!} + \frac{z ^ {3} }{3!} + \dots $$
of $ { \mathop{\rm Ass} } hat ( X, Y) $. Then there exist elements $ c _ {n} ( X, Y) $, homogeneous of degree $ n $, and $ R _ {m} ( X, Y) $, homogeneous of degree $ m $ in $ X $ and of degree $ n $ in $ Y $, in $ \mathop{\rm Ass} ( X, Y) $ which are Lie elements, i.e. they are in $ L( X, Y) \subset \mathop{\rm Ass} ( X, Y) $, and which are such that
$$ \tag{a1 } e ^ {X} e ^ {Y} = \prod _ {n \geq 1 } e ^ {c _ {n} ( X, Y) / n! } , $$
$$ \tag{a2 } e ^ {- X} e ^ {- Y} e ^ {X} e ^ {Y} = \prod _ { n= 1} ^ \infty \prod _ { m= 1} ^ \infty e ^ {R _ {m,n } ( X, Y)/m!n! } . $$
Here the factors on the right-hand side are to be taken in the natural order for (a1), while in the case of (a2) the product is first taken over $ m $ and then over $ n $. The $ c _ {n} ( X, Y) $ are recursively defined by:
$$ c _ {n} ( X, Y) = $$
$$ = \ \left . \frac{\partial ^ {n} }{\partial t ^ {n} } \left ( e ^ {- t ^ {n- 1} c _ {n- 1} / ( n- 1)! } \dots e ^ {- t ^ {2} c _ {2} / 2! } e ^ {- t c _ {1} } e ^ {tX} e ^ {tY} \right ) \right | _ {t= 0 } . $$
These formulas find application in (combinatorial) group theory, algebraic topology and quantum theory, cf., e.g., [a2]–[a4]. For convergence results (for $ X $ and $ Y $ elements of a Banach algebra) concerning formula (a1) and for more general formulas cf., e.g., [a2].
References
[a1] | H. Zassenhaus, "Über Lie'schen Ringe mit Primzahlcharakteristik" Abh. Math. Sem. Univ. Hamburg , 13 (1940) pp. 1–100 |
[a2] | M. Suzuki, "On the convergence of exponential operators - the Zassenhaus formula, BCH formula and systematic approximants" Comm. Math. Phys. , 57 (1977) pp. 193–200 |
[a3] | W. Magnus, A. Karrass, B. Solitar, "Combinatorial group theory: presentations in terms of generators and relations" , Wiley (Interscience) (1966) pp. 412 |
[a4] | H.J. Baues, "Commutator calculus and groups of homotopy classes" , Cambridge Univ. Press (1981) |
Zassenhaus formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Zassenhaus_formula&oldid=13224