Difference between revisions of "Conjugate function"
(Importing text file) |
m (fixing \;) |
||
(2 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | c0250201.png | ||
+ | $#A+1 = 56 n = 0 | ||
+ | $#C+1 = 56 : ~/encyclopedia/old_files/data/C025/C.0205020 Conjugate function | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
A concept in the theory of functions which is a concrete image of some involutory operator for the corresponding class of functions. | A concept in the theory of functions which is a concrete image of some involutory operator for the corresponding class of functions. | ||
− | 1) The function conjugate to a complex-valued function | + | 1) The function conjugate to a complex-valued function $ f $ |
+ | is the function $ \overline{f} $ | ||
+ | whose values are the complex conjugates of those of $ f $. | ||
2) For the function conjugate to a harmonic function see [[Conjugate harmonic functions|Conjugate harmonic functions]]. | 2) For the function conjugate to a harmonic function see [[Conjugate harmonic functions|Conjugate harmonic functions]]. | ||
− | 3) The function conjugate to a | + | 3) The function conjugate to a $ 2 \pi $-periodic summable function $ f $ |
+ | on $ [- \pi , \pi ] $ | ||
+ | is given by | ||
+ | |||
+ | $$ | ||
+ | \overline{f} ( x) = \ | ||
+ | \lim\limits _ {\epsilon \rightarrow 0+ } \ | ||
+ | - { | ||
+ | \frac{1} \pi | ||
+ | } | ||
+ | \int\limits _ \epsilon ^ \pi | ||
+ | |||
+ | \frac{f ( x + t) - f ( x - t) }{2 \mathop{\rm tan} ( t / 2) } | ||
+ | dt; | ||
+ | $$ | ||
− | + | it exists almost-everywhere and coincides almost-everywhere with the $ ( C, \alpha ) $-sum, $ \alpha > 0 $, | |
+ | and the Abel–Poisson sum of the [[Conjugate trigonometric series|conjugate trigonometric series]]. | ||
− | + | 4) The function conjugate to a function $ f: X \rightarrow \overline{\mathbf R} $ | |
+ | defined on a vector space $ X $ | ||
+ | dual to a vector space $ Y $ (with respect to a bilinear form $ \langle x, y \rangle $) | ||
+ | is the function on $ Y $ | ||
+ | given by | ||
− | + | $$ \tag{* } | |
+ | f ^ {*} ( y) = \ | ||
+ | \sup _ {x \in X } \ | ||
+ | ( \langle x, y \rangle - f ( x)). | ||
+ | $$ | ||
− | + | The conjugate of a function defined on $ Y $ | |
+ | is defined in a similar way. | ||
− | The conjugate | + | The function conjugate to the function $ f _ {p} ( x) = {| x | ^ {p} } /p $, |
+ | $ 1 < p < \infty $, | ||
+ | of one variable is given by | ||
− | + | $$ | |
+ | f _ {q } ( y) = \ | ||
− | + | \frac{| y | ^ {q } }{q } | |
+ | ,\ \ | ||
+ | { | ||
+ | \frac{1}{p} | ||
+ | } + { | ||
+ | \frac{1}{q } | ||
+ | } = 1. | ||
+ | $$ | ||
− | The function conjugate to the function | + | The function conjugate to the function $ f ( x) = \langle x, x \rangle/2 $ |
+ | on a Hilbert space $ X $ | ||
+ | with scalar product $ \langle , \rangle $ | ||
+ | is the function $ \langle y, y \rangle/2 $. | ||
+ | The function conjugate to the norm $ N ( x) = \| x \| $ | ||
+ | on a normed space is the function $ N ^ {*} ( y) $ | ||
+ | which is equal to zero when $ \| y \| < 1 $ | ||
+ | and to $ + \infty $ | ||
+ | when $ \| y \| > 1 $. | ||
− | If | + | If $ f $ |
+ | is smooth and increases at infinity faster than any linear function, then $ f ^ {*} $ | ||
+ | is just the [[Legendre transform|Legendre transform]] of $ f $. | ||
+ | For one-dimensional strictly-convex functions, a definition equivalent to (*) was given by W.H. Young [[#References|[1]]] in other terms. He defined the conjugate of a function | ||
− | + | $$ | |
+ | f ( x) = \ | ||
+ | \int\limits _ { 0 } ^ { x } | ||
+ | \phi ( t) dt, | ||
+ | $$ | ||
− | where | + | where $ \phi $ |
+ | is continuous and strictly increasing, by the relation | ||
− | + | $$ | |
+ | f ^ {*} ( y) = \ | ||
+ | \int\limits _ { 0 } ^ { y } | ||
+ | \psi ( t) dt, | ||
+ | $$ | ||
− | where | + | where $ \psi $ |
+ | is the function inverse to $ \phi $. | ||
+ | Definition (*) was originally proposed by S. Mandelbrojt for one-dimensional functions, by W. Fenchel [[#References|[2]]] in the finite-dimensional case, and by J. Moreau [[#References|[3]]] and A. Brøndsted [[#References|[4]]] in the infinite-dimensional case. For a convex function and its conjugate, Young's inequality holds: | ||
− | + | $$ | |
+ | \langle x, y \rangle \leq \ | ||
+ | f ( x) + f ^ {*} ( y). | ||
+ | $$ | ||
− | The conjugate function is a closed convex function. The conjugation operator | + | The conjugate function is a closed convex function. The conjugation operator $ *: f \mapsto f ^ {*} $ |
+ | establishes a one-to-one correspondence between the family of proper closed convex functions on $ X $ | ||
+ | and that of proper closed convex functions on $ Y $ (the Fenchel–Moreau theorem). | ||
For more details see [[#References|[5]]] and [[#References|[6]]]. | For more details see [[#References|[5]]] and [[#References|[6]]]. | ||
Line 42: | Line 117: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> W.H. Young, "On classes of summable functions and their Fourier series" ''Proc. Roy. Soc. Ser. A.'' , '''87''' (1912) pp. 225–229</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> W. Fenchel, "On conjugate convex functions" ''Canad. J. Math.'' , '''1''' (1949) pp. 73–77</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J.J. Moreau, "Fonctions convexes en dualité" , Univ. Montpellier (1962)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A. Brøndsted, "Conjugate convex functions in topological vector spaces" ''Math. Fys. Medd. Danske vid. Selsk.'' , '''34''' : 2 (1964) pp. 1–26</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> R.T. Rockafellar, "Convex analysis" , Princeton Univ. Press (1970)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> V.M. Alekseev, V.M. Tikhomirov, S.V. Fomin, "Commande optimale" , MIR (1982) (Translated from Russian)</TD></TR></table> | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> W.H. Young, "On classes of summable functions and their Fourier series" ''Proc. Roy. Soc. Ser. A.'' , '''87''' (1912) pp. 225–229 {{MR|}} {{ZBL|43.1114.12}} {{ZBL|43.0334.09}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> W. Fenchel, "On conjugate convex functions" ''Canad. J. Math.'' , '''1''' (1949) pp. 73–77 {{MR|0028365}} {{ZBL|0038.20902}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J.J. Moreau, "Fonctions convexes en dualité" , Univ. Montpellier (1962) {{MR|}} {{ZBL|}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A. Brøndsted, "Conjugate convex functions in topological vector spaces" ''Math. Fys. Medd. Danske vid. Selsk.'' , '''34''' : 2 (1964) pp. 1–26 {{MR|}} {{ZBL|0119.10004}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> R.T. Rockafellar, "Convex analysis" , Princeton Univ. Press (1970) {{MR|0274683}} {{ZBL|0193.18401}} </TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> V.M. Alekseev, V.M. Tikhomirov, S.V. Fomin, "Commande optimale" , MIR (1982) (Translated from Russian) {{MR|728225}} {{ZBL|}} </TD></TR></table> |
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | The concepts of conjugate harmonic functions and conjugate trigonometric series are not unrelated. Let | + | The concepts of conjugate harmonic functions and conjugate trigonometric series are not unrelated. Let $ u $ |
+ | be a harmonic function on the closed unit disc and $ \widetilde{u} $ | ||
+ | its harmonic conjugate, so that $ u = \mathop{\rm Re} ( \phi ) $, | ||
+ | $ \widetilde{u} = \mathop{\rm Im} ( \phi ) $, | ||
+ | where $ \phi $ | ||
+ | is the analytic function $ u + i \widetilde{u} $. | ||
+ | Let $ g ( t) $ | ||
+ | be the boundary value function of $ u $, | ||
+ | i.e. $ g ( t) = u ( e ^ {it} ) $. | ||
+ | Then one has the Poisson integral representation | ||
− | + | $$ | |
+ | u ( re ^ {i \theta } ) = \int\limits _ {- \pi } ^ \pi P _ {r} ( \theta - | ||
+ | t) g ( t) dt , | ||
+ | $$ | ||
where | where | ||
− | + | $$ | |
+ | P _ {r} ( s) = | ||
+ | \frac{1}{2 \pi } | ||
+ | \mathop{\rm Re} | ||
+ | \frac{1 + re | ||
+ | ^ {is} }{1 - re ^ {is} } | ||
+ | , | ||
+ | $$ | ||
and | and | ||
− | + | $$ | |
+ | \widetilde{u} ( re ^ {i \theta } ) = \ | ||
+ | \int\limits _ {- \pi } ^ \pi Q _ {r} ( \theta - t) g ( t) dt , | ||
+ | $$ | ||
with | with | ||
− | + | $$ | |
+ | Q _ {r} = { | ||
+ | \frac{1}{2 \pi } | ||
+ | } \mathop{\rm Im} | ||
+ | \frac{1 + re ^ {is} }{1 - re ^ {is} } | ||
+ | . | ||
+ | $$ | ||
− | Then letting | + | Then letting $ r \uparrow 1 $, |
+ | (formally) | ||
− | + | $$ | |
+ | \widetilde{u} ( e ^ {i | ||
+ | \theta } ) = { | ||
+ | \frac{1}{2 \pi } | ||
+ | } \int\limits _ { 0 } ^ \pi | ||
+ | \frac{g ( \theta - t) - g | ||
+ | ( \theta + t) }{ \mathop{\rm tan} ( t / 2) } | ||
+ | dt | ||
+ | $$ | ||
− | is precisely the conjugate trigonometric series of | + | is precisely the conjugate trigonometric series of $ g ( t) $. |
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A. Zygmund, "Trigonometric series" , '''1–2''' , Cambridge Univ. Press (1959)</TD></TR></table> | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A. Zygmund, "Trigonometric series" , '''1–2''' , Cambridge Univ. Press (1959) {{MR|0107776}} {{ZBL|0085.05601}} </TD></TR></table> |
Latest revision as of 01:52, 21 April 2022
A concept in the theory of functions which is a concrete image of some involutory operator for the corresponding class of functions.
1) The function conjugate to a complex-valued function $ f $ is the function $ \overline{f} $ whose values are the complex conjugates of those of $ f $.
2) For the function conjugate to a harmonic function see Conjugate harmonic functions.
3) The function conjugate to a $ 2 \pi $-periodic summable function $ f $ on $ [- \pi , \pi ] $ is given by
$$ \overline{f} ( x) = \ \lim\limits _ {\epsilon \rightarrow 0+ } \ - { \frac{1} \pi } \int\limits _ \epsilon ^ \pi \frac{f ( x + t) - f ( x - t) }{2 \mathop{\rm tan} ( t / 2) } dt; $$
it exists almost-everywhere and coincides almost-everywhere with the $ ( C, \alpha ) $-sum, $ \alpha > 0 $, and the Abel–Poisson sum of the conjugate trigonometric series.
4) The function conjugate to a function $ f: X \rightarrow \overline{\mathbf R} $ defined on a vector space $ X $ dual to a vector space $ Y $ (with respect to a bilinear form $ \langle x, y \rangle $) is the function on $ Y $ given by
$$ \tag{* } f ^ {*} ( y) = \ \sup _ {x \in X } \ ( \langle x, y \rangle - f ( x)). $$
The conjugate of a function defined on $ Y $ is defined in a similar way.
The function conjugate to the function $ f _ {p} ( x) = {| x | ^ {p} } /p $, $ 1 < p < \infty $, of one variable is given by
$$ f _ {q } ( y) = \ \frac{| y | ^ {q } }{q } ,\ \ { \frac{1}{p} } + { \frac{1}{q } } = 1. $$
The function conjugate to the function $ f ( x) = \langle x, x \rangle/2 $ on a Hilbert space $ X $ with scalar product $ \langle , \rangle $ is the function $ \langle y, y \rangle/2 $. The function conjugate to the norm $ N ( x) = \| x \| $ on a normed space is the function $ N ^ {*} ( y) $ which is equal to zero when $ \| y \| < 1 $ and to $ + \infty $ when $ \| y \| > 1 $.
If $ f $ is smooth and increases at infinity faster than any linear function, then $ f ^ {*} $ is just the Legendre transform of $ f $. For one-dimensional strictly-convex functions, a definition equivalent to (*) was given by W.H. Young [1] in other terms. He defined the conjugate of a function
$$ f ( x) = \ \int\limits _ { 0 } ^ { x } \phi ( t) dt, $$
where $ \phi $ is continuous and strictly increasing, by the relation
$$ f ^ {*} ( y) = \ \int\limits _ { 0 } ^ { y } \psi ( t) dt, $$
where $ \psi $ is the function inverse to $ \phi $. Definition (*) was originally proposed by S. Mandelbrojt for one-dimensional functions, by W. Fenchel [2] in the finite-dimensional case, and by J. Moreau [3] and A. Brøndsted [4] in the infinite-dimensional case. For a convex function and its conjugate, Young's inequality holds:
$$ \langle x, y \rangle \leq \ f ( x) + f ^ {*} ( y). $$
The conjugate function is a closed convex function. The conjugation operator $ *: f \mapsto f ^ {*} $ establishes a one-to-one correspondence between the family of proper closed convex functions on $ X $ and that of proper closed convex functions on $ Y $ (the Fenchel–Moreau theorem).
For more details see [5] and [6].
See also Convex analysis; Support function; Duality in extremal problems, Convex analysis; Dual functions.
References
[1] | W.H. Young, "On classes of summable functions and their Fourier series" Proc. Roy. Soc. Ser. A. , 87 (1912) pp. 225–229 Zbl 43.1114.12 Zbl 43.0334.09 |
[2] | W. Fenchel, "On conjugate convex functions" Canad. J. Math. , 1 (1949) pp. 73–77 MR0028365 Zbl 0038.20902 |
[3] | J.J. Moreau, "Fonctions convexes en dualité" , Univ. Montpellier (1962) |
[4] | A. Brøndsted, "Conjugate convex functions in topological vector spaces" Math. Fys. Medd. Danske vid. Selsk. , 34 : 2 (1964) pp. 1–26 Zbl 0119.10004 |
[5] | R.T. Rockafellar, "Convex analysis" , Princeton Univ. Press (1970) MR0274683 Zbl 0193.18401 |
[6] | V.M. Alekseev, V.M. Tikhomirov, S.V. Fomin, "Commande optimale" , MIR (1982) (Translated from Russian) MR728225 |
Comments
The concepts of conjugate harmonic functions and conjugate trigonometric series are not unrelated. Let $ u $ be a harmonic function on the closed unit disc and $ \widetilde{u} $ its harmonic conjugate, so that $ u = \mathop{\rm Re} ( \phi ) $, $ \widetilde{u} = \mathop{\rm Im} ( \phi ) $, where $ \phi $ is the analytic function $ u + i \widetilde{u} $. Let $ g ( t) $ be the boundary value function of $ u $, i.e. $ g ( t) = u ( e ^ {it} ) $. Then one has the Poisson integral representation
$$ u ( re ^ {i \theta } ) = \int\limits _ {- \pi } ^ \pi P _ {r} ( \theta - t) g ( t) dt , $$
where
$$ P _ {r} ( s) = \frac{1}{2 \pi } \mathop{\rm Re} \frac{1 + re ^ {is} }{1 - re ^ {is} } , $$
and
$$ \widetilde{u} ( re ^ {i \theta } ) = \ \int\limits _ {- \pi } ^ \pi Q _ {r} ( \theta - t) g ( t) dt , $$
with
$$ Q _ {r} = { \frac{1}{2 \pi } } \mathop{\rm Im} \frac{1 + re ^ {is} }{1 - re ^ {is} } . $$
Then letting $ r \uparrow 1 $, (formally)
$$ \widetilde{u} ( e ^ {i \theta } ) = { \frac{1}{2 \pi } } \int\limits _ { 0 } ^ \pi \frac{g ( \theta - t) - g ( \theta + t) }{ \mathop{\rm tan} ( t / 2) } dt $$
is precisely the conjugate trigonometric series of $ g ( t) $.
References
[a1] | A. Zygmund, "Trigonometric series" , 1–2 , Cambridge Univ. Press (1959) MR0107776 Zbl 0085.05601 |
Conjugate function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Conjugate_function&oldid=13183