|
|
Line 1: |
Line 1: |
− | ''of valency <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026880/c0268802.png" />''
| + | <!-- |
| + | c0268802.png |
| + | $#A+1 = 40 n = 0 |
| + | $#C+1 = 40 : ~/encyclopedia/old_files/data/C026/C.0206880 Covariant tensor |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | A tensor of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026880/c0268803.png" />, an element of the tensor product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026880/c0268804.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026880/c0268805.png" /> copies of the dual space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026880/c0268806.png" /> of the vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026880/c0268807.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026880/c0268808.png" />. The space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026880/c0268809.png" /> is itself a vector space over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026880/c02688010.png" /> with respect to the addition of covariant tensors of the same valency and multiplication of them by scalars. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026880/c02688011.png" /> be finite dimensional, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026880/c02688012.png" /> be a basis of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026880/c02688013.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026880/c02688014.png" /> be the basis dual to it of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026880/c02688015.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026880/c02688016.png" /> and the set of all tensors of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026880/c02688017.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026880/c02688018.png" />, forms a basis for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026880/c02688019.png" />. Any covariant tensor can be represented in the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026880/c02688020.png" />. The numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026880/c02688021.png" /> are called the coordinates, or components, of the covariant tensor relative to the basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026880/c02688022.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026880/c02688023.png" />. Under a change of a basis of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026880/c02688024.png" /> according to the formulas <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026880/c02688025.png" /> and the corresponding change of the basis of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026880/c02688026.png" />, the components of the covariant tensor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026880/c02688027.png" /> are changed according to the so-called covariant law
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026880/c02688028.png" /></td> </tr></table>
| + | ''of valency $ s \geq 1 $'' |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026880/c02688029.png" />, the covariant tensor is called a [[Covariant vector|covariant vector]]; when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026880/c02688030.png" /> a covariant tensor corresponds in an invariant way with an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026880/c02688031.png" />-linear mapping from the direct product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026880/c02688032.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026880/c02688033.png" /> times) into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026880/c02688034.png" /> by taking the components of the covariant tensor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026880/c02688035.png" /> relative to the basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026880/c02688036.png" /> as the values of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026880/c02688037.png" />-linear mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026880/c02688038.png" /> at the basis vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026880/c02688039.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026880/c02688040.png" />, and conversely; for this reason a covariant tensor is sometimes defined as a multilinear functional on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026880/c02688041.png" />.
| + | A tensor of type $ ( 0, s) $, |
| + | an element of the tensor product $ T _ {s} ( E) = E ^ {*} \otimes \dots \otimes E ^ {*} $ |
| + | of $ s $ |
| + | copies of the dual space $ E ^ {*} $ |
| + | of the vector space $ E $ |
| + | over a field $ K $. |
| + | The space $ T _ {s} ( E) $ |
| + | is itself a vector space over $ K $ |
| + | with respect to the addition of covariant tensors of the same valency and multiplication of them by scalars. Let $ E $ |
| + | be finite dimensional, let $ e _ {1} \dots e _ {n} $ |
| + | be a basis of $ E $ |
| + | and let $ e ^ {1} \dots e ^ {n} $ |
| + | be the basis dual to it of $ E ^ {*} $. |
| + | Then $ \mathop{\rm dim} T _ {s} ( E) = n ^ {s} $ |
| + | and the set of all tensors of the form $ e ^ {i _ {1} } \otimes \dots \otimes e ^ {i _ {s} } $, |
| + | $ 1 \leq i _ {1} \dots i _ {s} \leq n $, |
| + | forms a basis for $ T _ {s} ( E) $. |
| + | Any covariant tensor can be represented in the form $ t = t _ {i _ {1} \dots i _ {s} } e ^ {i _ {1} } \otimes \dots \otimes e ^ {i _ {s} } $. |
| + | The numbers $ t _ {i _ {1} \dots i _ {s} } $ |
| + | are called the coordinates, or components, of the covariant tensor relative to the basis $ e _ {1} \dots e _ {n} $ |
| + | of $ E $. |
| + | Under a change of a basis of $ E $ |
| + | according to the formulas $ e _ {j} ^ \prime = a _ {j} ^ {i} e _ {i} $ |
| + | and the corresponding change of the basis of $ T _ {s} ( E) $, |
| + | the components of the covariant tensor $ t $ |
| + | are changed according to the so-called covariant law |
| + | |
| + | $$ |
| + | t _ {j _ {1} \dots j _ {s} } ^ \prime = \ |
| + | a _ {j _ {1} } ^ {i _ {1} } \dots |
| + | a _ {j _ {s} } ^ {i _ {s} } |
| + | t _ {i _ {1} \dots i _ {s} } . |
| + | $$ |
| + | |
| + | If $ s = 1 $, |
| + | the covariant tensor is called a [[Covariant vector|covariant vector]]; when $ s \geq 2 $ |
| + | a covariant tensor corresponds in an invariant way with an $ s $- |
| + | linear mapping from the direct product $ E ^ {s} = E \times \dots \times E $( |
| + | $ s $ |
| + | times) into $ K $ |
| + | by taking the components of the covariant tensor $ t $ |
| + | relative to the basis $ e _ {1} \dots e _ {n} $ |
| + | as the values of the $ r $- |
| + | linear mapping $ \widetilde{t} $ |
| + | at the basis vectors $ ( e _ {i _ {1} } \dots e _ {i _ {s} } ) $ |
| + | in $ E ^ {s} $, |
| + | and conversely; for this reason a covariant tensor is sometimes defined as a multilinear functional on $ E ^ {s} $. |
| | | |
| For references see [[Covariant vector|Covariant vector]]. | | For references see [[Covariant vector|Covariant vector]]. |
of valency $ s \geq 1 $
A tensor of type $ ( 0, s) $,
an element of the tensor product $ T _ {s} ( E) = E ^ {*} \otimes \dots \otimes E ^ {*} $
of $ s $
copies of the dual space $ E ^ {*} $
of the vector space $ E $
over a field $ K $.
The space $ T _ {s} ( E) $
is itself a vector space over $ K $
with respect to the addition of covariant tensors of the same valency and multiplication of them by scalars. Let $ E $
be finite dimensional, let $ e _ {1} \dots e _ {n} $
be a basis of $ E $
and let $ e ^ {1} \dots e ^ {n} $
be the basis dual to it of $ E ^ {*} $.
Then $ \mathop{\rm dim} T _ {s} ( E) = n ^ {s} $
and the set of all tensors of the form $ e ^ {i _ {1} } \otimes \dots \otimes e ^ {i _ {s} } $,
$ 1 \leq i _ {1} \dots i _ {s} \leq n $,
forms a basis for $ T _ {s} ( E) $.
Any covariant tensor can be represented in the form $ t = t _ {i _ {1} \dots i _ {s} } e ^ {i _ {1} } \otimes \dots \otimes e ^ {i _ {s} } $.
The numbers $ t _ {i _ {1} \dots i _ {s} } $
are called the coordinates, or components, of the covariant tensor relative to the basis $ e _ {1} \dots e _ {n} $
of $ E $.
Under a change of a basis of $ E $
according to the formulas $ e _ {j} ^ \prime = a _ {j} ^ {i} e _ {i} $
and the corresponding change of the basis of $ T _ {s} ( E) $,
the components of the covariant tensor $ t $
are changed according to the so-called covariant law
$$
t _ {j _ {1} \dots j _ {s} } ^ \prime = \
a _ {j _ {1} } ^ {i _ {1} } \dots
a _ {j _ {s} } ^ {i _ {s} }
t _ {i _ {1} \dots i _ {s} } .
$$
If $ s = 1 $,
the covariant tensor is called a covariant vector; when $ s \geq 2 $
a covariant tensor corresponds in an invariant way with an $ s $-
linear mapping from the direct product $ E ^ {s} = E \times \dots \times E $(
$ s $
times) into $ K $
by taking the components of the covariant tensor $ t $
relative to the basis $ e _ {1} \dots e _ {n} $
as the values of the $ r $-
linear mapping $ \widetilde{t} $
at the basis vectors $ ( e _ {i _ {1} } \dots e _ {i _ {s} } ) $
in $ E ^ {s} $,
and conversely; for this reason a covariant tensor is sometimes defined as a multilinear functional on $ E ^ {s} $.
For references see Covariant vector.