Difference between revisions of "Pseudo-periodic function"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | p0757701.png | ||
+ | $#A+1 = 22 n = 0 | ||
+ | $#C+1 = 22 : ~/encyclopedia/old_files/data/P075/P.0705770 Pseudo\AAhperiodic function | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | ''with periods $ \omega _ {0} \dots \omega _ {r} $'' | |
− | + | A function $ f ( t , u _ {1} \dots u _ {r} ) $ | |
+ | of $ r + 1 $ | ||
+ | variables satisfying: | ||
− | + | $$ | |
+ | f ( t , u _ {1} \dots u _ {i} + \omega _ {i} \dots u _ {r} ) = | ||
+ | $$ | ||
− | + | $$ | |
+ | = \ | ||
+ | f ( t , u _ {1} \dots u _ {i} \dots u _ {r} ) ,\ i = 1 \dots r ; | ||
+ | $$ | ||
− | + | $$ | |
+ | f ( t + \omega _ {0} , u _ {1} \dots u _ {r} ) = f ( | ||
+ | t , u _ {1} + \omega _ {0} \dots u _ {r} + \omega _ {0} ) . | ||
+ | $$ | ||
+ | Example: if $ f _ {0} ( t) $ | ||
+ | and $ f _ {1} ( t) $ | ||
+ | are continuous periodic functions with periods $ \omega _ {0} $ | ||
+ | and $ \omega _ {1} $, | ||
+ | respectively, then $ f ( t , u _ {1} ) = f _ {0} ( t) + f _ {1} ( t + u _ {1} ) $ | ||
+ | is a pseudo-periodic function. | ||
+ | A pseudo-periodic function is connected with a [[Quasi-periodic function|quasi-periodic function]] and is determined by it in a unique way: A function $ F ( t) $ | ||
+ | is quasi-periodic with periods $ \omega _ {0} \dots \omega _ {r} $ | ||
+ | if and only if there exists a continuous pseudo-periodic function $ f ( t , u _ {1} \dots u _ {r} ) $ | ||
+ | with periods $ \omega _ {0} \dots \omega _ {r} $ | ||
+ | such that $ F ( t) = f ( t , 0 \dots 0 ) $. | ||
====Comments==== | ====Comments==== | ||
− | The expression "pseudo-periodic function" is also used to indicate a function with a pseudo- | + | The expression "pseudo-periodic function" is also used to indicate a function with a pseudo- $ p $- |
+ | period: $ g( t+ p) = e ^ {i \theta } w( t) $ | ||
+ | for some $ \theta $ | ||
+ | and all $ t $. | ||
+ | For such a function $ g( t) $ | ||
+ | the function $ h( t, u) = e ^ {ip ^ {-} 1 \theta u } g( t) $ | ||
+ | is pseudo-periodic in the sense above. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Urabe, "Green functions of pseudo-periodic differential operators" M. Urabe (ed.) , ''Japan-United States Sem. Ordinary Differential and Functional Eq.'' , Springer (1971) pp. 106–122</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.A. Goldstein, "Asymptotics for bounded semigroups on Hilbert space" R. Nagel (ed.) et al. (ed.) , ''Aspects of Positivity in Funct. Anal.'' , North-Holland (1986) pp. 49–62</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Urabe, "Green functions of pseudo-periodic differential operators" M. Urabe (ed.) , ''Japan-United States Sem. Ordinary Differential and Functional Eq.'' , Springer (1971) pp. 106–122</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.A. Goldstein, "Asymptotics for bounded semigroups on Hilbert space" R. Nagel (ed.) et al. (ed.) , ''Aspects of Positivity in Funct. Anal.'' , North-Holland (1986) pp. 49–62</TD></TR></table> |
Latest revision as of 08:08, 6 June 2020
with periods $ \omega _ {0} \dots \omega _ {r} $
A function $ f ( t , u _ {1} \dots u _ {r} ) $ of $ r + 1 $ variables satisfying:
$$ f ( t , u _ {1} \dots u _ {i} + \omega _ {i} \dots u _ {r} ) = $$
$$ = \ f ( t , u _ {1} \dots u _ {i} \dots u _ {r} ) ,\ i = 1 \dots r ; $$
$$ f ( t + \omega _ {0} , u _ {1} \dots u _ {r} ) = f ( t , u _ {1} + \omega _ {0} \dots u _ {r} + \omega _ {0} ) . $$
Example: if $ f _ {0} ( t) $ and $ f _ {1} ( t) $ are continuous periodic functions with periods $ \omega _ {0} $ and $ \omega _ {1} $, respectively, then $ f ( t , u _ {1} ) = f _ {0} ( t) + f _ {1} ( t + u _ {1} ) $ is a pseudo-periodic function.
A pseudo-periodic function is connected with a quasi-periodic function and is determined by it in a unique way: A function $ F ( t) $ is quasi-periodic with periods $ \omega _ {0} \dots \omega _ {r} $ if and only if there exists a continuous pseudo-periodic function $ f ( t , u _ {1} \dots u _ {r} ) $ with periods $ \omega _ {0} \dots \omega _ {r} $ such that $ F ( t) = f ( t , 0 \dots 0 ) $.
Comments
The expression "pseudo-periodic function" is also used to indicate a function with a pseudo- $ p $- period: $ g( t+ p) = e ^ {i \theta } w( t) $ for some $ \theta $ and all $ t $. For such a function $ g( t) $ the function $ h( t, u) = e ^ {ip ^ {-} 1 \theta u } g( t) $ is pseudo-periodic in the sense above.
References
[a1] | M. Urabe, "Green functions of pseudo-periodic differential operators" M. Urabe (ed.) , Japan-United States Sem. Ordinary Differential and Functional Eq. , Springer (1971) pp. 106–122 |
[a2] | J.A. Goldstein, "Asymptotics for bounded semigroups on Hilbert space" R. Nagel (ed.) et al. (ed.) , Aspects of Positivity in Funct. Anal. , North-Holland (1986) pp. 49–62 |
Pseudo-periodic function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pseudo-periodic_function&oldid=12964