Namespaces
Variants
Actions

Difference between revisions of "Initial conditions"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
i0511801.png
 +
$#A+1 = 10 n = 0
 +
$#C+1 = 10 : ~/encyclopedia/old_files/data/I051/I.0501180 Initial conditions
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
Conditions imposed in formulating the [[Cauchy problem|Cauchy problem]] for differential equations. For an ordinary differential equation in the form
 
Conditions imposed in formulating the [[Cauchy problem|Cauchy problem]] for differential equations. For an ordinary differential equation in the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051180/i0511801.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
u  ^ {(} m)  = F ( t, u , u  ^  \prime  \dots u ^ {( m - 1) } ) ,
 +
$$
  
 
the initial conditions prescribe the values of the derivatives (Cauchy data):
 
the initial conditions prescribe the values of the derivatives (Cauchy data):
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051180/i0511802.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
 +
u ( t _ {0} )  = u _ {0} \dots
 +
u ^ {( m - 1) } ( t _ {0} )  = u _ {0} ^ {( m - 1) } ,
 +
$$
 +
 
 +
where  $  ( t _ {0} , u _ {0} \dots u _ {0} ^ {( m - 1) } ) $
 +
is an arbitrary fixed point of the domain of definition of the function  $  F $;  
 +
this point is known as the initial point of the required solution. The Cauchy problem (1), (2) is often called an initial value problem.
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051180/i0511803.png" /> is an arbitrary fixed point of the domain of definition of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051180/i0511804.png" />; this point is known as the initial point of the required solution. The Cauchy problem (1), (2) is often called an initial value problem.
+
For a partial differential equation, written in normal form with respect to a distinguished variable  $  t $,
  
For a partial differential equation, written in normal form with respect to a distinguished variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051180/i0511805.png" />,
+
$$
 +
Lu  = \
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051180/i0511806.png" /></td> </tr></table>
+
\frac{\partial  ^ {m} u }{\partial  t  ^ {m} }
 +
-
 +
F \left ( x, t,\
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051180/i0511807.png" /></td> </tr></table>
+
\frac{\partial  ^ {\alpha + k } u }{\partial  x  ^  \alpha  \partial  t  ^ {k} }
 +
 
 +
\right )  = 0,
 +
$$
 +
 
 +
$$
 +
| \alpha | + k  \leq  N,\  0  \leq  k  < m,\  x  = ( x _ {1} \dots x _ {n} ),
 +
$$
  
 
the initial conditions consist in prescribing the values of the derivatives (Cauchy data)
 
the initial conditions consist in prescribing the values of the derivatives (Cauchy data)
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051180/i0511808.png" /></td> </tr></table>
+
$$
 
+
\left .  
of the required solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051180/i0511809.png" /> on the hyperplane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051180/i05118010.png" /> (the support of the initial conditions).
+
\frac{\partial  ^ {k} u }{\partial  t  ^ {k} }
  
 +
\right | _ {t = 0 }  = \
 +
\phi _ {k} ( x),\ \
 +
k = 0 \dots m - 1,
 +
$$
  
 +
of the required solution  $  u ( x, t) $
 +
on the hyperplane  $  t = 0 $(
 +
the support of the initial conditions).
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  E.L. Ince,  "Ordinary differential equations" , Dover, reprint  (1956)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  S. Mizohata,  "The theory of partial differential equations" , Cambridge Univ. Press  (1973)  (Translated from Japanese)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  E.L. Ince,  "Ordinary differential equations" , Dover, reprint  (1956)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  S. Mizohata,  "The theory of partial differential equations" , Cambridge Univ. Press  (1973)  (Translated from Japanese)</TD></TR></table>

Latest revision as of 22:12, 5 June 2020


Conditions imposed in formulating the Cauchy problem for differential equations. For an ordinary differential equation in the form

$$ \tag{1 } u ^ {(} m) = F ( t, u , u ^ \prime \dots u ^ {( m - 1) } ) , $$

the initial conditions prescribe the values of the derivatives (Cauchy data):

$$ \tag{2 } u ( t _ {0} ) = u _ {0} \dots u ^ {( m - 1) } ( t _ {0} ) = u _ {0} ^ {( m - 1) } , $$

where $ ( t _ {0} , u _ {0} \dots u _ {0} ^ {( m - 1) } ) $ is an arbitrary fixed point of the domain of definition of the function $ F $; this point is known as the initial point of the required solution. The Cauchy problem (1), (2) is often called an initial value problem.

For a partial differential equation, written in normal form with respect to a distinguished variable $ t $,

$$ Lu = \ \frac{\partial ^ {m} u }{\partial t ^ {m} } - F \left ( x, t,\ \frac{\partial ^ {\alpha + k } u }{\partial x ^ \alpha \partial t ^ {k} } \right ) = 0, $$

$$ | \alpha | + k \leq N,\ 0 \leq k < m,\ x = ( x _ {1} \dots x _ {n} ), $$

the initial conditions consist in prescribing the values of the derivatives (Cauchy data)

$$ \left . \frac{\partial ^ {k} u }{\partial t ^ {k} } \right | _ {t = 0 } = \ \phi _ {k} ( x),\ \ k = 0 \dots m - 1, $$

of the required solution $ u ( x, t) $ on the hyperplane $ t = 0 $( the support of the initial conditions).

Comments

References

[a1] E.L. Ince, "Ordinary differential equations" , Dover, reprint (1956)
[a2] S. Mizohata, "The theory of partial differential equations" , Cambridge Univ. Press (1973) (Translated from Japanese)
How to Cite This Entry:
Initial conditions. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Initial_conditions&oldid=12913
This article was adapted from an original article by A.P. Soldatov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article