|
|
(2 intermediate revisions by the same user not shown) |
Line 1: |
Line 1: |
| + | {{TEX|done}} |
| ''bi-algebra, hyperalgebra'' | | ''bi-algebra, hyperalgebra'' |
| | | |
− | A graded module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h0479701.png" /> over an associative-commutative ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h0479702.png" /> with identity, equipped simultaneously with the structure of an associative graded algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h0479703.png" /> with identity (unit element) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h0479704.png" /> and the structure of an associative graded [[Co-algebra|co-algebra]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h0479705.png" /> with co-identity (co-unit) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h0479706.png" />, satisfying the following conditions: | + | A graded module $ A $ |
| + | over an associative-commutative ring $ K $ |
| + | with identity, equipped simultaneously with the structure of an associative graded algebra $ \mu : \ A \otimes A \rightarrow A $ |
| + | with identity (unit element) $ \iota : \ K \rightarrow A $ |
| + | and the structure of an associative graded [[Co-algebra|co-algebra]] $ \delta : \ A \rightarrow A \otimes A $ |
| + | with co-identity (co-unit) $ \epsilon : \ A \rightarrow K $ , |
| + | satisfying the following conditions: |
| | | |
− | 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h0479707.png" /> is a homomorphism of graded co-algebras; | + | 1) $ \iota $ |
| + | is a homomorphism of graded co-algebras; |
| | | |
− | 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h0479708.png" /> is a homomorphism of graded algebras; | + | 2) $ \epsilon $ |
| + | is a homomorphism of graded algebras; |
| | | |
− | 3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h0479709.png" /> is a homomorphism of graded algebras. | + | 3) $ \delta $ |
| + | is a homomorphism of graded algebras. |
| | | |
| Condition 3) is equivalent to: | | Condition 3) is equivalent to: |
| | | |
− | 3') <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797010.png" /> is a homomorphism of graded co-algebras. | + | 3') $ \mu $ |
| + | is a homomorphism of graded co-algebras. |
| | | |
| Sometimes the requirement that the co-multiplication is associative is discarded; such algebras are called quasi-Hopf algebras. | | Sometimes the requirement that the co-multiplication is associative is discarded; such algebras are called quasi-Hopf algebras. |
| | | |
− | For any two Hopf algebras <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797011.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797012.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797013.png" /> their tensor product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797014.png" /> is endowed with the natural structure of a Hopf algebra. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797015.png" /> be a Hopf algebra, where all the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797016.png" /> are finitely-generated projective <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797017.png" />-modules. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797018.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797019.png" /> is the module dual to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797020.png" />, endowed with the homomorphisms of graded modules <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797021.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797022.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797023.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797024.png" />, is a Hopf algebra; it is said to be dual to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797025.png" />. An element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797026.png" /> of a Hopf algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797027.png" /> is called primitive if | + | For any two Hopf algebras $ A $ |
− | | + | and $ B $ |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797028.png" /></td> </tr></table>
| + | over $ K $ |
− | | + | their tensor product $ A \otimes B $ |
− | The primitive elements form a graded subalgebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797029.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797030.png" /> under the operation | + | is endowed with the natural structure of a Hopf algebra. Let $ A = \sum _ {n \in \mathbf Z} A _{n} $ |
− | | + | be a Hopf algebra, where all the $ A _{n} $ |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797031.png" /></td> </tr></table>
| + | are finitely-generated projective $ K $ - |
− | | + | modules. Then $ A ^{*} = \sum _ {n \in \mathbf Z} A _{n} ^{*} $ , |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797032.png" /> is connected (that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797033.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797034.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797035.png" />) and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797036.png" /> is a field of characteristic 0, then the subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797037.png" /> generates the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797038.png" /> (with respect to multiplication) if and only if the co-multiplication is graded commutative [[#References|[2]]]. | + | where $ A _{n} ^{*} $ |
| + | is the module dual to $ A _{n} $ , |
| + | endowed with the homomorphisms of graded modules $ \delta ^{*} : \ A ^{*} \otimes A ^{*} \rightarrow A ^{*} $ , |
| + | $ \epsilon ^{*} : \ K \rightarrow A ^{*} $ , |
| + | $ \mu ^{*} : \ A ^{*} \rightarrow A ^{*} \otimes A ^{*} $ , |
| + | $ \iota ^{*} : \ A ^{*} \rightarrow K $ , |
| + | is a Hopf algebra; it is said to be dual to $ A $ . |
| + | An element $ x $ |
| + | of a Hopf algebra $ A $ |
| + | is called primitive if$$ |
| + | \delta (x) = |
| + | x \otimes 1 + 1 \otimes x. |
| + | $$ |
| + | The primitive elements form a graded subalgebra $ P _{A} $ |
| + | in $ A $ |
| + | under the operation$$ |
| + | [x,\ y] = xy - (-1) ^{pq} yx, |
| + | x \in A _{p} , y \in A _{q} . |
| + | $$ |
| + | If $ A $ |
| + | is connected (that is, $ A _{n} = 0 $ |
| + | for $ n < 0 $ , |
| + | $ A _{0} = K \ $ ) |
| + | and if $ K $ |
| + | is a field of characteristic 0, then the subspace $ P _{A} $ |
| + | generates the algebra $ A $ ( |
| + | with respect to multiplication) if and only if the co-multiplication is graded commutative [[#References|[2]]]. |
| | | |
| ===Examples.=== | | ===Examples.=== |
| | | |
| | | |
− | 1) For any graded Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797039.png" /> (that is, a graded algebra that is a Lie [[Superalgebra|superalgebra]] under the natural <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797040.png" />-grading) the universal enveloping algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797041.png" /> becomes a Hopf algebra if one puts | + | 1) For any graded Lie algebra $ \mathfrak g $ ( |
| + | that is, a graded algebra that is a Lie [[Superalgebra|superalgebra]] under the natural $ \mathbf Z _{2} $ - |
| + | grading) the universal enveloping algebra $ U ( \mathfrak g ) $ |
| + | becomes a Hopf algebra if one puts$$ |
| + | \epsilon (x) = 0, |
| + | \delta (x) = x \otimes 1 + 1 \otimes x, |
| + | x \in \mathfrak g . |
| + | $$ |
| + | Here $ P _ {U ( \mathfrak g )} = \mathfrak g $ . |
| + | If $ K $ |
| + | is a field of characteristic 0, then any connected Hopf algebra $ A $ |
| + | generated by primitive elements is naturally isomorphic to $ U (P _{A} ) $ ( |
| + | see [[#References|[2]]]). |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797042.png" /></td> </tr></table>
| + | 2) Similarly, the structure of a Hopf algebra (with a trivial grading) is defined in the group algebra $ K [G] $ |
| + | of an arbitrary group $ G $ . |
| | | |
− | Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797043.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797044.png" /> is a field of characteristic 0, then any connected Hopf algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797045.png" /> generated by primitive elements is naturally isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797046.png" /> (see [[#References|[2]]]).
| |
| | | |
− | 2) Similarly, the structure of a Hopf algebra (with a trivial grading) is defined in the group algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797047.png" /> of an arbitrary group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797048.png" />.
| + | 3) The algebra of regular functions on an affine algebraic group $ G $ |
| + | becomes a Hopf algebra (with trivial grading) if one defines the homomorphisms $ \delta $ |
| + | and $ \epsilon $ |
| + | by means of the multiplication $ G \times G \rightarrow G $ |
| + | and the imbedding $ \{ e \} \rightarrow G $ , |
| + | where $ e $ |
| + | is the unit element of $ G $ ( |
| + | see [[#References|[3]]]). |
| | | |
− | 3) The algebra of regular functions on an affine algebraic group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797049.png" /> becomes a Hopf algebra (with trivial grading) if one defines the homomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797050.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797051.png" /> by means of the multiplication <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797052.png" /> and the imbedding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797053.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797054.png" /> is the unit element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797055.png" /> (see [[#References|[3]]]).
| + | 4) Suppose that $ G $ |
| + | is a path-connected [[H-space|$ H $ - |
| + | space]] with multiplication $ m $ |
| + | and unit element $ e $ |
| + | and suppose that $ \Delta : \ G \rightarrow G \times G $ , |
| + | $ \iota : \ \{ e \} \rightarrow G $ , |
| + | $ p: \ G \rightarrow \{ e \} $ |
| + | are defined by the formulas $ \Delta (a) = (a,\ a) $ , |
| + | $ \iota (e) = e $ , |
| + | $ p (a) = e $ , |
| + | $ a \in G $ . |
| + | If all cohomology modules $ H ^{n} (G,\ K) $ |
| + | are projective and finitely generated, then the mappings $ \mu = \Delta ^{*} $ , |
| + | $ \iota = p ^{*} $ , |
| + | $ \delta = m ^{*} $ , |
| + | $ \epsilon = \iota ^{*} $ |
| + | induced in the cohomology, turn $ H ^{*} (G,\ K) $ |
| + | into a graded commutative quasi-Hopf algebra. If the multiplication $ m $ |
| + | is homotopy-associative, then $ H ^{*} (G ,\ K) $ |
| + | is a Hopf algebra, and the Hopf algebra dual to it is the homology algebra $ H _{*} (G,\ K) $ , |
| + | equipped with the mappings $ m _{*} $ , |
| + | $ \iota _{*} $ , |
| + | $ \Delta _{*} $ , |
| + | $ p _{*} $ ( |
| + | the Pontryagin algebra). If $ K $ |
| + | is a field of characteristic 0, then the Pontryagin algebra is generated by primitive elements and is isomorphic to $ U ( \pi (G,\ K)) $ , |
| + | where $ \pi (G,\ K) = \sum _ {i = 0} ^ \infty \pi _{i} (G) \otimes K $ |
| + | is regarded as a graded Lie algebra under the Samelson product (see [[#References|[2]]]). |
| | | |
− | 4) Suppose that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797056.png" /> is a path-connected [[H-space|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797057.png" />-space]] with multiplication <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797058.png" /> and unit element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797059.png" /> and suppose that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797060.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797061.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797062.png" /> are defined by the formulas <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797063.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797064.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797065.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797066.png" />. If all cohomology modules <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797067.png" /> are projective and finitely generated, then the mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797068.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797069.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797070.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797071.png" /> induced in the cohomology, turn <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797072.png" /> into a graded commutative quasi-Hopf algebra. If the multiplication <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797073.png" /> is homotopy-associative, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797074.png" /> is a Hopf algebra, and the Hopf algebra dual to it is the homology algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797075.png" />, equipped with the mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797076.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797077.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797078.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797079.png" /> (the Pontryagin algebra). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797080.png" /> is a field of characteristic 0, then the Pontryagin algebra is generated by primitive elements and is isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797081.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797082.png" /> is regarded as a graded Lie algebra under the Samelson product (see [[#References|[2]]]). | + | The algebra $ H ^{*} (G,\ K) $ |
| + | in Example 4) was first considered by H. Hopf in [[#References|[1]]], who showed that it is an exterior algebra with generators of odd degrees if $ K $ |
| + | is a field of characteristic 0 and $ H ^{*} (G,\ K) $ |
| + | is finite-dimensional. The structure of an arbitrary connected, graded, commutative quasi-Hopf algebra $ A $ |
| + | subject to the condition $ \mathop{\rm dim}\nolimits \ A _{n} < \infty $ , |
| + | $ n \in \mathbf Z $ , |
| + | over a perfect field $ K $ |
| + | of characteristic $ p $ |
| + | is described by the following theorem (see [[#References|[4]]]). The algebra $ A $ |
| + | splits into the tensor product of algebras with a single generator $ x $ |
| + | and the relation $ x ^{s} = 0 $ , |
| + | where for $ p = 2 $ , |
| + | $ s $ |
| + | is a power of 2 or $ \infty $ , |
| + | and for $ p \neq 2 $ , |
| + | $ s $ |
| + | is a power of $ p $ |
| + | or $ \infty $ ( |
| + | $ \infty $ |
| + | for $ p = 0 $ ) |
| + | if $ x $ |
| + | has even degree, and $ s = 2 $ |
| + | if the degree of $ x $ |
| + | is odd. In particular, for $ p = 0 $ , |
| + | $ A $ |
| + | is the tensor product of an exterior algebra with generators of odd degree and an algebra of polynomials with generators of even degrees. On the other hand, every connected Hopf algebra $ A $ |
| + | over a field $ K $ |
| + | in which $ x ^{2} = 0 $ |
| + | for any element $ x $ |
| + | of odd degree and in which all elements of odd degree and all elements of even degree are decomposable, is the exterior algebra $ A = \land P _{A} $ ( |
| + | see [[#References|[2]]]). In particular, such are the cohomology algebra and the Pontryagin algebra of a connected compact Lie group over $ \mathbf R $ . |
| | | |
− | The algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797083.png" /> in Example 4) was first considered by H. Hopf in [[#References|[1]]], who showed that it is an exterior algebra with generators of odd degrees if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797084.png" /> is a field of characteristic 0 and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797085.png" /> is finite-dimensional. The structure of an arbitrary connected, graded, commutative quasi-Hopf algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797086.png" /> subject to the condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797087.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797088.png" />, over a perfect field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797089.png" /> of characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797090.png" /> is described by the following theorem (see [[#References|[4]]]). The algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797091.png" /> splits into the tensor product of algebras with a single generator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797092.png" /> and the relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797093.png" />, where for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797094.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797095.png" /> is a power of 2 or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797096.png" />, and for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797097.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797098.png" /> is a power of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797099.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970100.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970101.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970102.png" />) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970103.png" /> has even degree, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970104.png" /> if the degree of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970105.png" /> is odd. In particular, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970106.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970107.png" /> is the tensor product of an exterior algebra with generators of odd degree and an algebra of polynomials with generators of even degrees. On the other hand, every connected Hopf algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970108.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970109.png" /> in which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970110.png" /> for any element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970111.png" /> of odd degree and in which all elements of odd degree and all elements of even degree are decomposable, is the exterior algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970112.png" /> (see [[#References|[2]]]). In particular, such are the cohomology algebra and the Pontryagin algebra of a connected compact Lie group over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970113.png" />.
| |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Hopf, "Ueber die Topologie der Gruppenmannigfaltigkeiten und ihrer Verallgemeinerungen" ''Ann. of Math. (2)'' , '''42''' (1941) pp. 22–52</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.W. Milnor, J.C. Moore, "On the structure of Hopf algebras" ''Ann. of Math. (2)'' , '''81''' : 2 (1965) pp. 211–264</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A. Borel, "Linear algebraic groups" , Benjamin (1969)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A. Borel, "Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts" ''Ann. of Math.'' , '''57''' (1953) pp. 115–207</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> S. MacLane, "Homology" , Springer (1963)</TD></TR></table> | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Hopf, "Ueber die Topologie der Gruppenmannigfaltigkeiten und ihrer Verallgemeinerungen" ''Ann. of Math. (2)'' , '''42''' (1941) pp. 22–52 {{MR|}} {{ZBL|}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.W. Milnor, J.C. Moore, "On the structure of Hopf algebras" ''Ann. of Math. (2)'' , '''81''' : 2 (1965) pp. 211–264 {{MR|0174052}} {{ZBL|0163.28202}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A. Borel, "Linear algebraic groups" , Benjamin (1969) {{MR|0251042}} {{ZBL|0206.49801}} {{ZBL|0186.33201}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A. Borel, "Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts" ''Ann. of Math.'' , '''57''' (1953) pp. 115–207 {{MR|0051508}} {{ZBL|0052.40001}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> S. MacLane, "Homology" , Springer (1963) {{MR|}} {{ZBL|0818.18001}} {{ZBL|0328.18009}} </TD></TR></table> |
| | | |
| | | |
Line 50: |
Line 162: |
| Terminology concerning Hopf algebras and bi-algebras is not yet quite standardized. However, the following nomenclature (and notation) seems to be on the way of being universally accepted. | | Terminology concerning Hopf algebras and bi-algebras is not yet quite standardized. However, the following nomenclature (and notation) seems to be on the way of being universally accepted. |
| | | |
− | A bi-algebra is a module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970114.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970115.png" /> equipped with module mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970116.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970117.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970118.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970119.png" /> such that | + | A bi-algebra is a module $ A $ |
| + | over $ K $ |
| + | equipped with module mappings $ m: \ A \otimes A \rightarrow A $ , |
| + | $ e : \ K \rightarrow A $ , |
| + | $ \mu : \ A \rightarrow A \otimes A $ , |
| + | $ \epsilon : \ A \rightarrow K $ |
| + | such that |
| | | |
− | i) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970120.png" /> is an associative algebra with unit; | + | i) $ ( A ,\ m ,\ e ) $ |
| + | is an associative algebra with unit; |
| | | |
− | ii) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970121.png" /> is a co-associative co-algebra with co-unit; | + | ii) $ ( A ,\ \mu ,\ \epsilon ) $ |
| + | is a co-associative co-algebra with co-unit; |
| | | |
− | iii) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970122.png" /> is a homomorphism of co-algebras; | + | iii) $ e $ |
| + | is a homomorphism of co-algebras; |
| | | |
− | iv) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970123.png" /> is a homomorphism of algebras; | + | iv) $ \epsilon $ |
| + | is a homomorphism of algebras; |
| | | |
− | v) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970124.png" /> is a homomorphism of co-algebras. | + | v) $ m $ |
| + | is a homomorphism of co-algebras. |
| | | |
| This last condition is equivalent to: | | This last condition is equivalent to: |
| | | |
− | v') <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970125.png" /> is a homomorphism of algebras. | + | v') $ \mu $ |
| + | is a homomorphism of algebras. |
| | | |
| A grading is not assumed to be part of the definition. If there is a grading and every morphism under consideration is graded, then one speaks of a graded bi-algebra. | | A grading is not assumed to be part of the definition. If there is a grading and every morphism under consideration is graded, then one speaks of a graded bi-algebra. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970126.png" /> be a bi-algebra over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970127.png" />. An antipode for the bi-algebra is a module homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970128.png" /> such that | + | Let $ ( A ,\ m ,\ e ,\ \mu ,\ \epsilon ) $ |
| + | be a bi-algebra over $ K $ . |
| + | An antipode for the bi-algebra is a module homomorphism $ \iota : \ A \rightarrow A $ |
| + | such that |
| | | |
− | vi) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970129.png" />. | + | vi) $ m \circ ( \iota \otimes 1 ) \circ \mu = m \circ ( 1 \otimes \iota ) \circ \mu = e \circ \epsilon $ . |
| | | |
− | A bi-algebra with antipode <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970130.png" /> is called a Hopf algebra. A graded Hopf algebra is a graded bi-algebra with antipode <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970131.png" /> which is a homomorphism of graded modules.
| |
| | | |
− | Given a co-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970132.png" /> and an algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970133.png" />, the module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970134.png" /> admits a convolution product, defined as follows
| + | A bi-algebra with antipode $ \iota $ |
| + | is called a Hopf algebra. A graded Hopf algebra is a graded bi-algebra with antipode $ \iota $ |
| + | which is a homomorphism of graded modules. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970135.png" /></td> </tr></table>
| + | Given a co-algebra $ ( C ,\ \mu _{C} ,\ \epsilon _{C} ) $ |
| + | and an algebra $ ( A ,\ m _{A} ,\ e _{A} ) $ , |
| + | the module $ \mathop{\rm Mod}\nolimits _{K} ( C ,\ A ) $ |
| + | admits a convolution product, defined as follows$$ |
| + | f \star g = m _{A} \circ ( f \otimes g ) \circ \mu _{C} . |
| + | $$ |
| + | In terms of this convolution product conditions vi) can be stated as |
| + | |
| + | vi') $ \iota \star \mathop{\rm id}\nolimits = \mathop{\rm id}\nolimits \star \iota = e \circ \epsilon $ , |
| | | |
− | In terms of this convolution product conditions vi) can be stated as
| |
| | | |
− | vi') <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970136.png" />,
| + | where $ \mathop{\rm id}\nolimits : \ A \rightarrow A $ |
| + | is the identity morphism of the bi-algebra $ A $ . |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970137.png" /> is the identity morphism of the bi-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970138.png" />.
| |
| | | |
− | An additional example of a Hopf algebra is the following. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970139.png" /> be a [[Formal group|formal group]]. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970140.png" />. Identifying <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970141.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970142.png" />, the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970143.png" /> define a (continuous) algebra morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970144.png" /> turning <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970145.png" /> into a bi-algebra. There is an antipode making <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970146.png" /> a Hopf algebra. It is called the contravariant bi-algebra or contravariant Hopf algebra of the formal group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970147.png" />. Note that here the completed tensor product is used. | + | An additional example of a Hopf algebra is the following. Let $ F _{1} ( X ; \ Y ) \dots F _{n} ( X ; \ Y ) \in K [ [ X _{1} \dots X _{n} ; \ Y _{1} \dots Y _{n} ] ] $ |
| + | be a [[Formal group|formal group]]. Let $ A = K [ [ X _{1} \dots X _{n} ] ] $ . |
| + | Identifying $ Y _{i} $ |
| + | with $ 1 \otimes X _{i} \in A \widehat \otimes A $ , |
| + | the $ F _{1} \dots F _{n} $ |
| + | define a (continuous) algebra morphism $ \mu : \ A \rightarrow A \widehat \otimes A $ |
| + | turning $ A $ |
| + | into a bi-algebra. There is an antipode making $ A $ |
| + | a Hopf algebra. It is called the contravariant bi-algebra or contravariant Hopf algebra of the formal group $ F $ . |
| + | Note that here the completed tensor product is used. |
| | | |
| Hopf algebras, under the name quantum groups, and related objects have also become important in physics; in particular in connection with the quantum inverse-scattering method [[#References|[a3]]], [[#References|[a4]]]. | | Hopf algebras, under the name quantum groups, and related objects have also become important in physics; in particular in connection with the quantum inverse-scattering method [[#References|[a3]]], [[#References|[a4]]]. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E. Abe, "Hopf algebras" , Cambridge Univ. Press (1977)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> M. Hazewinkel, "Formal groups and applications" , Acad. Press (1978)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> V.G. Drinfel'd, "Quantum groups" , ''Proc. Internat. Congress Mathematicians (Berkeley, 1986)'' , '''1''' , Amer. Math. Soc. (1987) pp. 798–820</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> L.D. Faddeev, "Integrable models in (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970148.png" />)-dimensional quantum field theory (Les Houches, 1982)" , Elsevier (1984)</TD></TR></table> | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E. Abe, "Hopf algebras" , Cambridge Univ. Press (1977) {{MR|1857062}} {{MR|0594432}} {{MR|0321962}} {{ZBL|0476.16008}} {{ZBL|0236.14021}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> M. Hazewinkel, "Formal groups and applications" , Acad. Press (1978) {{MR|0506881}} {{MR|0463184}} {{ZBL|0454.14020}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> V.G. Drinfel'd, "Quantum groups" , ''Proc. Internat. Congress Mathematicians (Berkeley, 1986)'' , '''1''' , Amer. Math. Soc. (1987) pp. 798–820 {{MR|}} {{ZBL|0667.16003}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> L.D. Faddeev, "Integrable models in (h047970148.png)-dimensional quantum field theory (Les Houches, 1982)" , Elsevier (1984) {{MR|782509}} {{ZBL|}} </TD></TR></table> |
bi-algebra, hyperalgebra
A graded module $ A $
over an associative-commutative ring $ K $
with identity, equipped simultaneously with the structure of an associative graded algebra $ \mu : \ A \otimes A \rightarrow A $
with identity (unit element) $ \iota : \ K \rightarrow A $
and the structure of an associative graded co-algebra $ \delta : \ A \rightarrow A \otimes A $
with co-identity (co-unit) $ \epsilon : \ A \rightarrow K $ ,
satisfying the following conditions:
1) $ \iota $
is a homomorphism of graded co-algebras;
2) $ \epsilon $
is a homomorphism of graded algebras;
3) $ \delta $
is a homomorphism of graded algebras.
Condition 3) is equivalent to:
3') $ \mu $
is a homomorphism of graded co-algebras.
Sometimes the requirement that the co-multiplication is associative is discarded; such algebras are called quasi-Hopf algebras.
For any two Hopf algebras $ A $
and $ B $
over $ K $
their tensor product $ A \otimes B $
is endowed with the natural structure of a Hopf algebra. Let $ A = \sum _ {n \in \mathbf Z} A _{n} $
be a Hopf algebra, where all the $ A _{n} $
are finitely-generated projective $ K $ -
modules. Then $ A ^{*} = \sum _ {n \in \mathbf Z} A _{n} ^{*} $ ,
where $ A _{n} ^{*} $
is the module dual to $ A _{n} $ ,
endowed with the homomorphisms of graded modules $ \delta ^{*} : \ A ^{*} \otimes A ^{*} \rightarrow A ^{*} $ ,
$ \epsilon ^{*} : \ K \rightarrow A ^{*} $ ,
$ \mu ^{*} : \ A ^{*} \rightarrow A ^{*} \otimes A ^{*} $ ,
$ \iota ^{*} : \ A ^{*} \rightarrow K $ ,
is a Hopf algebra; it is said to be dual to $ A $ .
An element $ x $
of a Hopf algebra $ A $
is called primitive if$$
\delta (x) =
x \otimes 1 + 1 \otimes x.
$$
The primitive elements form a graded subalgebra $ P _{A} $
in $ A $
under the operation$$
[x,\ y] = xy - (-1) ^{pq} yx,
x \in A _{p} , y \in A _{q} .
$$
If $ A $
is connected (that is, $ A _{n} = 0 $
for $ n < 0 $ ,
$ A _{0} = K \ $ )
and if $ K $
is a field of characteristic 0, then the subspace $ P _{A} $
generates the algebra $ A $ (
with respect to multiplication) if and only if the co-multiplication is graded commutative [2].
Examples.
1) For any graded Lie algebra $ \mathfrak g $ (
that is, a graded algebra that is a Lie superalgebra under the natural $ \mathbf Z _{2} $ -
grading) the universal enveloping algebra $ U ( \mathfrak g ) $
becomes a Hopf algebra if one puts$$
\epsilon (x) = 0,
\delta (x) = x \otimes 1 + 1 \otimes x,
x \in \mathfrak g .
$$
Here $ P _ {U ( \mathfrak g )} = \mathfrak g $ .
If $ K $
is a field of characteristic 0, then any connected Hopf algebra $ A $
generated by primitive elements is naturally isomorphic to $ U (P _{A} ) $ (
see [2]).
2) Similarly, the structure of a Hopf algebra (with a trivial grading) is defined in the group algebra $ K [G] $
of an arbitrary group $ G $ .
3) The algebra of regular functions on an affine algebraic group $ G $
becomes a Hopf algebra (with trivial grading) if one defines the homomorphisms $ \delta $
and $ \epsilon $
by means of the multiplication $ G \times G \rightarrow G $
and the imbedding $ \{ e \} \rightarrow G $ ,
where $ e $
is the unit element of $ G $ (
see [3]).
4) Suppose that $ G $
is a path-connected $ H $ -
space with multiplication $ m $
and unit element $ e $
and suppose that $ \Delta : \ G \rightarrow G \times G $ ,
$ \iota : \ \{ e \} \rightarrow G $ ,
$ p: \ G \rightarrow \{ e \} $
are defined by the formulas $ \Delta (a) = (a,\ a) $ ,
$ \iota (e) = e $ ,
$ p (a) = e $ ,
$ a \in G $ .
If all cohomology modules $ H ^{n} (G,\ K) $
are projective and finitely generated, then the mappings $ \mu = \Delta ^{*} $ ,
$ \iota = p ^{*} $ ,
$ \delta = m ^{*} $ ,
$ \epsilon = \iota ^{*} $
induced in the cohomology, turn $ H ^{*} (G,\ K) $
into a graded commutative quasi-Hopf algebra. If the multiplication $ m $
is homotopy-associative, then $ H ^{*} (G ,\ K) $
is a Hopf algebra, and the Hopf algebra dual to it is the homology algebra $ H _{*} (G,\ K) $ ,
equipped with the mappings $ m _{*} $ ,
$ \iota _{*} $ ,
$ \Delta _{*} $ ,
$ p _{*} $ (
the Pontryagin algebra). If $ K $
is a field of characteristic 0, then the Pontryagin algebra is generated by primitive elements and is isomorphic to $ U ( \pi (G,\ K)) $ ,
where $ \pi (G,\ K) = \sum _ {i = 0} ^ \infty \pi _{i} (G) \otimes K $
is regarded as a graded Lie algebra under the Samelson product (see [2]).
The algebra $ H ^{*} (G,\ K) $
in Example 4) was first considered by H. Hopf in [1], who showed that it is an exterior algebra with generators of odd degrees if $ K $
is a field of characteristic 0 and $ H ^{*} (G,\ K) $
is finite-dimensional. The structure of an arbitrary connected, graded, commutative quasi-Hopf algebra $ A $
subject to the condition $ \mathop{\rm dim}\nolimits \ A _{n} < \infty $ ,
$ n \in \mathbf Z $ ,
over a perfect field $ K $
of characteristic $ p $
is described by the following theorem (see [4]). The algebra $ A $
splits into the tensor product of algebras with a single generator $ x $
and the relation $ x ^{s} = 0 $ ,
where for $ p = 2 $ ,
$ s $
is a power of 2 or $ \infty $ ,
and for $ p \neq 2 $ ,
$ s $
is a power of $ p $
or $ \infty $ (
$ \infty $
for $ p = 0 $ )
if $ x $
has even degree, and $ s = 2 $
if the degree of $ x $
is odd. In particular, for $ p = 0 $ ,
$ A $
is the tensor product of an exterior algebra with generators of odd degree and an algebra of polynomials with generators of even degrees. On the other hand, every connected Hopf algebra $ A $
over a field $ K $
in which $ x ^{2} = 0 $
for any element $ x $
of odd degree and in which all elements of odd degree and all elements of even degree are decomposable, is the exterior algebra $ A = \land P _{A} $ (
see [2]). In particular, such are the cohomology algebra and the Pontryagin algebra of a connected compact Lie group over $ \mathbf R $ .
References
[1] | H. Hopf, "Ueber die Topologie der Gruppenmannigfaltigkeiten und ihrer Verallgemeinerungen" Ann. of Math. (2) , 42 (1941) pp. 22–52 |
[2] | J.W. Milnor, J.C. Moore, "On the structure of Hopf algebras" Ann. of Math. (2) , 81 : 2 (1965) pp. 211–264 MR0174052 Zbl 0163.28202 |
[3] | A. Borel, "Linear algebraic groups" , Benjamin (1969) MR0251042 Zbl 0206.49801 Zbl 0186.33201 |
[4] | A. Borel, "Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts" Ann. of Math. , 57 (1953) pp. 115–207 MR0051508 Zbl 0052.40001 |
[5] | S. MacLane, "Homology" , Springer (1963) Zbl 0818.18001 Zbl 0328.18009 |
Terminology concerning Hopf algebras and bi-algebras is not yet quite standardized. However, the following nomenclature (and notation) seems to be on the way of being universally accepted.
A bi-algebra is a module $ A $
over $ K $
equipped with module mappings $ m: \ A \otimes A \rightarrow A $ ,
$ e : \ K \rightarrow A $ ,
$ \mu : \ A \rightarrow A \otimes A $ ,
$ \epsilon : \ A \rightarrow K $
such that
i) $ ( A ,\ m ,\ e ) $
is an associative algebra with unit;
ii) $ ( A ,\ \mu ,\ \epsilon ) $
is a co-associative co-algebra with co-unit;
iii) $ e $
is a homomorphism of co-algebras;
iv) $ \epsilon $
is a homomorphism of algebras;
v) $ m $
is a homomorphism of co-algebras.
This last condition is equivalent to:
v') $ \mu $
is a homomorphism of algebras.
A grading is not assumed to be part of the definition. If there is a grading and every morphism under consideration is graded, then one speaks of a graded bi-algebra.
Let $ ( A ,\ m ,\ e ,\ \mu ,\ \epsilon ) $
be a bi-algebra over $ K $ .
An antipode for the bi-algebra is a module homomorphism $ \iota : \ A \rightarrow A $
such that
vi) $ m \circ ( \iota \otimes 1 ) \circ \mu = m \circ ( 1 \otimes \iota ) \circ \mu = e \circ \epsilon $ .
A bi-algebra with antipode $ \iota $
is called a Hopf algebra. A graded Hopf algebra is a graded bi-algebra with antipode $ \iota $
which is a homomorphism of graded modules.
Given a co-algebra $ ( C ,\ \mu _{C} ,\ \epsilon _{C} ) $
and an algebra $ ( A ,\ m _{A} ,\ e _{A} ) $ ,
the module $ \mathop{\rm Mod}\nolimits _{K} ( C ,\ A ) $
admits a convolution product, defined as follows$$
f \star g = m _{A} \circ ( f \otimes g ) \circ \mu _{C} .
$$
In terms of this convolution product conditions vi) can be stated as
vi') $ \iota \star \mathop{\rm id}\nolimits = \mathop{\rm id}\nolimits \star \iota = e \circ \epsilon $ ,
where $ \mathop{\rm id}\nolimits : \ A \rightarrow A $
is the identity morphism of the bi-algebra $ A $ .
An additional example of a Hopf algebra is the following. Let $ F _{1} ( X ; \ Y ) \dots F _{n} ( X ; \ Y ) \in K [ [ X _{1} \dots X _{n} ; \ Y _{1} \dots Y _{n} ] ] $
be a formal group. Let $ A = K [ [ X _{1} \dots X _{n} ] ] $ .
Identifying $ Y _{i} $
with $ 1 \otimes X _{i} \in A \widehat \otimes A $ ,
the $ F _{1} \dots F _{n} $
define a (continuous) algebra morphism $ \mu : \ A \rightarrow A \widehat \otimes A $
turning $ A $
into a bi-algebra. There is an antipode making $ A $
a Hopf algebra. It is called the contravariant bi-algebra or contravariant Hopf algebra of the formal group $ F $ .
Note that here the completed tensor product is used.
Hopf algebras, under the name quantum groups, and related objects have also become important in physics; in particular in connection with the quantum inverse-scattering method [a3], [a4].
References
[a1] | E. Abe, "Hopf algebras" , Cambridge Univ. Press (1977) MR1857062 MR0594432 MR0321962 Zbl 0476.16008 Zbl 0236.14021 |
[a2] | M. Hazewinkel, "Formal groups and applications" , Acad. Press (1978) MR0506881 MR0463184 Zbl 0454.14020 |
[a3] | V.G. Drinfel'd, "Quantum groups" , Proc. Internat. Congress Mathematicians (Berkeley, 1986) , 1 , Amer. Math. Soc. (1987) pp. 798–820 Zbl 0667.16003 |
[a4] | L.D. Faddeev, "Integrable models in (h047970148.png)-dimensional quantum field theory (Les Houches, 1982)" , Elsevier (1984) MR782509 |