|
|
(One intermediate revision by the same user not shown) |
Line 1: |
Line 1: |
− | Theorems stating that the [[Hodge structure|Hodge structure]] (period matrix) in the cohomology spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t0932601.png" /> of an algebraic or Kähler variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t0932602.png" /> completely characterizes the polarized Jacobi variety of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t0932603.png" />.
| + | <!-- |
| + | t0932601.png |
| + | $#A+1 = 79 n = 0 |
| + | $#C+1 = 79 : ~/encyclopedia/old_files/data/T093/T.0903260 Torelli theorems |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | The classical Torelli theorem relates to the case of curves (see [[#References|[1]]], [[#References|[2]]]) and states that a curve is defined up to an isomorphism by its periods. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t0932604.png" /> be a curve of genus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t0932605.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t0932606.png" /> be a basis of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t0932607.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t0932608.png" /> be a basis of the Abelian differentials (cf. [[Abelian differential|Abelian differential]]) and let the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t0932609.png" />-matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326010.png" /> be the period matrix, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326011.png" />. The intersection of cycles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326012.png" /> defines a skew-symmetric bilinear form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326013.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326014.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326015.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326016.png" /> be two curves. If bases <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326017.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326018.png" /> can be chosen with respect to which the period matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326019.png" /> and the intersection matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326020.png" /> of the curves are the same, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326021.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326022.png" /> are isomorphic. In other words, if the canonically polarized Jacobians of the curves <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326023.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326024.png" /> are isomorphic, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326025.png" />.
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326026.png" /> be a projective variety (or, more generally, a compact [[Kähler manifold|Kähler manifold]]), and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326027.png" /> be the Griffiths variety associated with the primitive cohomology spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326028.png" /> (see [[Period mapping|Period mapping]]). Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326029.png" /> contains the period matrices of primitive <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326030.png" />-forms on all varieties homeomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326031.png" />. The periods depend on the choice of the isomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326032.png" /> into a fixed space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326033.png" />. There is a naturally defined group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326034.png" /> of analytic automorphisms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326035.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326036.png" /> is an analytic space and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326037.png" /> determines a unique point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326038.png" />. In this situation, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326039.png" /> is called the modular space or the moduli space of Hodge structures.
| + | Theorems stating that the [[Hodge structure|Hodge structure]] (period matrix) in the cohomology spaces $ H ^ {*} ( X, \mathbf C ) $ |
| + | of an algebraic or Kähler variety $ X $ |
| + | completely characterizes the polarized Jacobi variety of $ X $. |
| | | |
− | The global Torelli problem consists in the elucidation of the question whether <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326040.png" /> uniquely determines <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326041.png" /> up to an isomorphism. In the case of an affirmative solution, the problem corresponds to the statement of the so-called (generalized) Torelli theorem. Torelli's theorem holds trivially for Abelian varieties in the case of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326042.png" />-forms and in the case of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326043.png" />-forms (see [[#References|[3]]]). Essentially, the only non-trivial case of a solution of the global Torelli problem (1984) is the case of a [[K3-surface|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326044.png" />-surface]]. The Torelli theorem has also been generalized to the case of Kähler <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326045.png" />-surfaces. | + | The classical Torelli theorem relates to the case of curves (see [[#References|[1]]], [[#References|[2]]]) and states that a curve is defined up to an isomorphism by its periods. Let $ X $ |
| + | be a curve of genus $ g $, |
| + | let $ \gamma _ {1} \dots \gamma _ {2g} $ |
| + | be a basis of $ H _ {1} ( X, \mathbf Z ) $, |
| + | let $ \omega _ {1} \dots \omega _ {g} \in H ^ {0} ( X, \Omega _ {X} ^ {1} ) = H ^ {1,0} \subset H ^ {1} ( X, \mathbf C ) $ |
| + | be a basis of the Abelian differentials (cf. [[Abelian differential|Abelian differential]]) and let the $ ( g \times 2g) $- |
| + | matrix $ \Omega = \| \pi _ {ij} \| $ |
| + | be the period matrix, where $ \pi _ {ij} = \int _ {\gamma _ {j} } \omega _ {i} $. |
| + | The intersection of cycles $ \gamma _ {i} \gamma _ {j} = q _ {ij} $ |
| + | defines a skew-symmetric bilinear form $ Q $ |
| + | in $ H _ {1} ( X, \mathbf Z ) $. |
| + | Let $ X $ |
| + | and $ \widetilde{X} $ |
| + | be two curves. If bases $ \gamma $ |
| + | and $ \omega $ |
| + | can be chosen with respect to which the period matrices $ \Omega $ |
| + | and the intersection matrices $ Q $ |
| + | of the curves are the same, then $ X $ |
| + | and $ \widetilde{X} $ |
| + | are isomorphic. In other words, if the canonically polarized Jacobians of the curves $ X $ |
| + | and $ \widetilde{X} $ |
| + | are isomorphic, then $ X \simeq \widetilde{X} $. |
| | | |
− | The local Torelli problem consists in solving the question when the Hodge structures on the cohomology spaces separate points in the local moduli space (the Kuranishi space) for a variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326046.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326047.png" /> be a family of polarized algebraic varieties, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326048.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326049.png" /> be the Griffiths variety associated with the periods of primitive <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326050.png" />-forms on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326051.png" />. The period mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326052.png" /> associates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326053.png" /> with the period matrix of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326054.png" />-forms on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326055.png" />. This mapping is holomorphic; the corresponding tangent mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326056.png" /> has been calculated (see [[#References|[3]]]). The local Torelli problem is equivalent to the question: When is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326057.png" /> an imbedding? By considering the mapping dual to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326058.png" /> one obtains a cohomological criterion for the validity of the local Torelli theorem: If the mapping
| + | Let $ X $ |
| + | be a projective variety (or, more generally, a compact [[Kähler manifold|Kähler manifold]]), and let $ D = D _ {k} $ |
| + | be the Griffiths variety associated with the primitive cohomology spaces $ H ^ {k} ( X, \mathbf C ) _ {0} $( |
| + | see [[Period mapping|Period mapping]]). Then $ D $ |
| + | contains the period matrices of primitive $ k $- |
| + | forms on all varieties homeomorphic to $ X $. |
| + | The periods depend on the choice of the isomorphism of $ H ^ {k} ( X, \mathbf C ) _ {0} $ |
| + | into a fixed space $ H $. |
| + | There is a naturally defined group $ \Gamma $ |
| + | of analytic automorphisms of $ D $ |
| + | such that $ M = D/ \Gamma $ |
| + | is an analytic space and $ X $ |
| + | determines a unique point $ \Phi ( X) \in M $. |
| + | In this situation, $ M $ |
| + | is called the modular space or the moduli space of Hodge structures. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326059.png" /></td> </tr></table>
| + | The global Torelli problem consists in the elucidation of the question whether $ \Phi ( X) $ |
| + | uniquely determines $ X $ |
| + | up to an isomorphism. In the case of an affirmative solution, the problem corresponds to the statement of the so-called (generalized) Torelli theorem. Torelli's theorem holds trivially for Abelian varieties in the case of $ 1 $- |
| + | forms and in the case of $ 2 $- |
| + | forms (see [[#References|[3]]]). Essentially, the only non-trivial case of a solution of the global Torelli problem (1984) is the case of a [[K3-surface| $ K3 $- |
| + | surface]]. The Torelli theorem has also been generalized to the case of Kähler $ K3 $- |
| + | surfaces. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326060.png" /></td> </tr></table>
| + | The local Torelli problem consists in solving the question when the Hodge structures on the cohomology spaces separate points in the local moduli space (the Kuranishi space) for a variety $ X $. |
| + | Let $ \pi : \mathfrak X \rightarrow B $ |
| + | be a family of polarized algebraic varieties, $ \pi ^ {-} 1 ( 0) = X $, |
| + | and let $ M = D/ \Gamma $ |
| + | be the Griffiths variety associated with the periods of primitive $ k $- |
| + | forms on $ X $. |
| + | The period mapping $ \Phi : B \rightarrow M $ |
| + | associates $ t \in B $ |
| + | with the period matrix of $ k $- |
| + | forms on $ \pi ^ {-} 1 ( t) $. |
| + | This mapping is holomorphic; the corresponding tangent mapping $ d \Phi $ |
| + | has been calculated (see [[#References|[3]]]). The local Torelli problem is equivalent to the question: When is $ d \Phi $ |
| + | an imbedding? By considering the mapping dual to $ d \Phi $ |
| + | one obtains a cohomological criterion for the validity of the local Torelli theorem: If the mapping |
| | | |
− | is an epimorphism, then the periods of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326061.png" />-forms give local moduli for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326062.png" />. The local Torelli theorem for curves is equivalent to the fact that quadratic differentials are generated by Abelian differentials. Noether's theorem states that this is true if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326063.png" /> or if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326064.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326065.png" /> is not hyper-elliptic. The local Torelli theorem clearly holds in the case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326066.png" /> if the canonical class is trivial. Such varieties include the Abelian varieties, hypersurfaces of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326067.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326068.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326069.png" />-surfaces. The validity of the local Torelli theorem has been established for various classes of higher-dimensional varieties. For non-singular hypersurfaces of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326070.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326071.png" /> it has been proved that the period mapping is an imbedding at a generic point except for the case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326072.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326073.png" /> and, possibly, the cases: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326074.png" /> divides <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326075.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326076.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326077.png" />, or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326078.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093260/t09326079.png" /> (see [[#References|[4]]]).
| + | $$ |
| + | \mu : \ |
| + | \oplus _ {0 \leq r \leq [( k - 1)/2] } |
| + | H ^ {n - r - 1 } |
| + | ( X, \Omega ^ {n - k + r + 1 } ) |
| + | \otimes H ^ {r} |
| + | ( X, \Omega ^ {k - r } ) \rightarrow |
| + | $$ |
| | | |
− | ====References====
| + | $$ |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> R. Torelli, ''Rend. Accad. Lincei V'' , '''22''' (1913) pp. 98–103</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Weil, "Zum Beweis der Torellischen Satzes" ''Nachr. Akad. Wiss. Göttingen'' (1957) pp. 33–53</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> P.A. Griffiths, "Periods of integrals on algebraic manifolds I, II" ''Amer. J. Math.'' , '''90''' (1968) pp. 568–626; 805–865</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> R. Donagi, "Generic Torelli for projective hypersurfaces" ''Compos. Math.'' , '''50''' (1983) pp. 325–353</TD></TR></table>
| + | \rightarrow \ |
| + | H ^ {n - 1 } ( X, \Omega ^ {1} \otimes \Omega ^ {n} ) |
| + | $$ |
| | | |
| + | is an epimorphism, then the periods of the $ k $- |
| + | forms give local moduli for $ X $. |
| + | The local Torelli theorem for curves is equivalent to the fact that quadratic differentials are generated by Abelian differentials. Noether's theorem states that this is true if $ g = 2 $ |
| + | or if $ g > 2 $ |
| + | and $ X $ |
| + | is not hyper-elliptic. The local Torelli theorem clearly holds in the case $ k = n $ |
| + | if the canonical class is trivial. Such varieties include the Abelian varieties, hypersurfaces of degree $ n + 2 $ |
| + | in $ P ^ {n + 1 } $ |
| + | and $ K3 $- |
| + | surfaces. The validity of the local Torelli theorem has been established for various classes of higher-dimensional varieties. For non-singular hypersurfaces of degree $ d $ |
| + | in $ P ^ {n + 1 } $ |
| + | it has been proved that the period mapping is an imbedding at a generic point except for the case $ n = 2 $, |
| + | $ d = 3 $ |
| + | and, possibly, the cases: $ d $ |
| + | divides $ n + 2 $, |
| + | $ d = 4 $ |
| + | and $ n = 4m $, |
| + | or $ d = 6 $ |
| + | and $ n = 6m + 1 $( |
| + | see [[#References|[4]]]). |
| | | |
| + | ====References==== |
| + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> R. Torelli, ''Rend. Accad. Lincei V'' , '''22''' (1913) pp. 98–103</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Weil, "Zum Beweis der Torellischen Satzes" ''Nachr. Akad. Wiss. Göttingen'' (1957) pp. 33–53 {{MR|89483}} {{ZBL|}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> P.A. Griffiths, "Periods of integrals on algebraic manifolds I, II" ''Amer. J. Math.'' , '''90''' (1968) pp. 568–626; 805–865</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> R. Donagi, "Generic Torelli for projective hypersurfaces" ''Compos. Math.'' , '''50''' (1983) pp. 325–353 {{MR|0720291}} {{ZBL|0598.14007}} </TD></TR></table> |
| | | |
| ====Comments==== | | ====Comments==== |
− |
| |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P.A. Griffiths (ed.) , ''Topics in transcendental algebraic geometry'' , Princeton Univ. Press (1984)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A. van de Ven, "Compact complex surfaces" , Springer (1984)</TD></TR></table> | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P.A. Griffiths (ed.) , ''Topics in transcendental algebraic geometry'' , Princeton Univ. Press (1984) {{MR|0756842}} {{ZBL|0528.00004}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A. van de Ven, "Compact complex surfaces" , Springer (1984) {{MR|}} {{ZBL|0718.14023}} </TD></TR></table> |
Theorems stating that the Hodge structure (period matrix) in the cohomology spaces $ H ^ {*} ( X, \mathbf C ) $
of an algebraic or Kähler variety $ X $
completely characterizes the polarized Jacobi variety of $ X $.
The classical Torelli theorem relates to the case of curves (see [1], [2]) and states that a curve is defined up to an isomorphism by its periods. Let $ X $
be a curve of genus $ g $,
let $ \gamma _ {1} \dots \gamma _ {2g} $
be a basis of $ H _ {1} ( X, \mathbf Z ) $,
let $ \omega _ {1} \dots \omega _ {g} \in H ^ {0} ( X, \Omega _ {X} ^ {1} ) = H ^ {1,0} \subset H ^ {1} ( X, \mathbf C ) $
be a basis of the Abelian differentials (cf. Abelian differential) and let the $ ( g \times 2g) $-
matrix $ \Omega = \| \pi _ {ij} \| $
be the period matrix, where $ \pi _ {ij} = \int _ {\gamma _ {j} } \omega _ {i} $.
The intersection of cycles $ \gamma _ {i} \gamma _ {j} = q _ {ij} $
defines a skew-symmetric bilinear form $ Q $
in $ H _ {1} ( X, \mathbf Z ) $.
Let $ X $
and $ \widetilde{X} $
be two curves. If bases $ \gamma $
and $ \omega $
can be chosen with respect to which the period matrices $ \Omega $
and the intersection matrices $ Q $
of the curves are the same, then $ X $
and $ \widetilde{X} $
are isomorphic. In other words, if the canonically polarized Jacobians of the curves $ X $
and $ \widetilde{X} $
are isomorphic, then $ X \simeq \widetilde{X} $.
Let $ X $
be a projective variety (or, more generally, a compact Kähler manifold), and let $ D = D _ {k} $
be the Griffiths variety associated with the primitive cohomology spaces $ H ^ {k} ( X, \mathbf C ) _ {0} $(
see Period mapping). Then $ D $
contains the period matrices of primitive $ k $-
forms on all varieties homeomorphic to $ X $.
The periods depend on the choice of the isomorphism of $ H ^ {k} ( X, \mathbf C ) _ {0} $
into a fixed space $ H $.
There is a naturally defined group $ \Gamma $
of analytic automorphisms of $ D $
such that $ M = D/ \Gamma $
is an analytic space and $ X $
determines a unique point $ \Phi ( X) \in M $.
In this situation, $ M $
is called the modular space or the moduli space of Hodge structures.
The global Torelli problem consists in the elucidation of the question whether $ \Phi ( X) $
uniquely determines $ X $
up to an isomorphism. In the case of an affirmative solution, the problem corresponds to the statement of the so-called (generalized) Torelli theorem. Torelli's theorem holds trivially for Abelian varieties in the case of $ 1 $-
forms and in the case of $ 2 $-
forms (see [3]). Essentially, the only non-trivial case of a solution of the global Torelli problem (1984) is the case of a $ K3 $-
surface. The Torelli theorem has also been generalized to the case of Kähler $ K3 $-
surfaces.
The local Torelli problem consists in solving the question when the Hodge structures on the cohomology spaces separate points in the local moduli space (the Kuranishi space) for a variety $ X $.
Let $ \pi : \mathfrak X \rightarrow B $
be a family of polarized algebraic varieties, $ \pi ^ {-} 1 ( 0) = X $,
and let $ M = D/ \Gamma $
be the Griffiths variety associated with the periods of primitive $ k $-
forms on $ X $.
The period mapping $ \Phi : B \rightarrow M $
associates $ t \in B $
with the period matrix of $ k $-
forms on $ \pi ^ {-} 1 ( t) $.
This mapping is holomorphic; the corresponding tangent mapping $ d \Phi $
has been calculated (see [3]). The local Torelli problem is equivalent to the question: When is $ d \Phi $
an imbedding? By considering the mapping dual to $ d \Phi $
one obtains a cohomological criterion for the validity of the local Torelli theorem: If the mapping
$$
\mu : \
\oplus _ {0 \leq r \leq [( k - 1)/2] }
H ^ {n - r - 1 }
( X, \Omega ^ {n - k + r + 1 } )
\otimes H ^ {r}
( X, \Omega ^ {k - r } ) \rightarrow
$$
$$
\rightarrow \
H ^ {n - 1 } ( X, \Omega ^ {1} \otimes \Omega ^ {n} )
$$
is an epimorphism, then the periods of the $ k $-
forms give local moduli for $ X $.
The local Torelli theorem for curves is equivalent to the fact that quadratic differentials are generated by Abelian differentials. Noether's theorem states that this is true if $ g = 2 $
or if $ g > 2 $
and $ X $
is not hyper-elliptic. The local Torelli theorem clearly holds in the case $ k = n $
if the canonical class is trivial. Such varieties include the Abelian varieties, hypersurfaces of degree $ n + 2 $
in $ P ^ {n + 1 } $
and $ K3 $-
surfaces. The validity of the local Torelli theorem has been established for various classes of higher-dimensional varieties. For non-singular hypersurfaces of degree $ d $
in $ P ^ {n + 1 } $
it has been proved that the period mapping is an imbedding at a generic point except for the case $ n = 2 $,
$ d = 3 $
and, possibly, the cases: $ d $
divides $ n + 2 $,
$ d = 4 $
and $ n = 4m $,
or $ d = 6 $
and $ n = 6m + 1 $(
see [4]).
References
[1] | R. Torelli, Rend. Accad. Lincei V , 22 (1913) pp. 98–103 |
[2] | A. Weil, "Zum Beweis der Torellischen Satzes" Nachr. Akad. Wiss. Göttingen (1957) pp. 33–53 MR89483 |
[3] | P.A. Griffiths, "Periods of integrals on algebraic manifolds I, II" Amer. J. Math. , 90 (1968) pp. 568–626; 805–865 |
[4] | R. Donagi, "Generic Torelli for projective hypersurfaces" Compos. Math. , 50 (1983) pp. 325–353 MR0720291 Zbl 0598.14007 |
References
[a1] | P.A. Griffiths (ed.) , Topics in transcendental algebraic geometry , Princeton Univ. Press (1984) MR0756842 Zbl 0528.00004 |
[a2] | A. van de Ven, "Compact complex surfaces" , Springer (1984) Zbl 0718.14023 |