|
|
(One intermediate revision by the same user not shown) |
Line 1: |
Line 1: |
− | The cohomological dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c0230501.png" /> of a topological space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c0230502.png" /> relative to the group of coefficients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c0230503.png" /> is the maximum integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c0230504.png" /> for which there exists closed subsets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c0230505.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c0230506.png" /> such that the cohomology groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c0230507.png" /> are non-zero. The homological dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c0230508.png" /> is similarly defined (cf. [[Homological dimension of a space|Homological dimension of a space]]). Finite Lebesgue dimension (covering dimension) is the same as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c0230509.png" /> (or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305010.png" />) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305011.png" /> is the subgroup of the integers (or real numbers modulo 1). In Euclidean space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305012.png" /> the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305013.png" /> is equivalent to the property that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305014.png" /> is locally linked by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305015.png" />-dimensional cycles (with coefficients in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305016.png" />). For paracompact spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305017.png" />, the inequality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305018.png" /> is equivalent to the existence of soft resolutions (cf. [[Soft sheaf|Soft sheaf]] and [[Resolution|Resolution]]) for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305019.png" /> of length <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305020.png" />. Since soft sheaves are acyclic, in this way a connection is established with the general definition of dimension in homological algebra; for example, the injective (or projective) dimension of a module is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305021.png" /> if it has an injective (or projective) resolution of length <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305022.png" />; the global dimension of a ring is the maximum of the injective (or projective) dimensions of the modules over the ring and is the analogue of the Lebesgue dimension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305023.png" />.
| + | <!-- |
| + | c0230501.png |
| + | $#A+1 = 109 n = 0 |
| + | $#C+1 = 109 : ~/encyclopedia/old_files/data/C023/C.0203050 Cohomological dimension |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| + | |
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | |
| + | The cohomological dimension $ ( \mathop{\rm dim} _ {G} X ) $ |
| + | of a topological space $ X $ |
| + | relative to the group of coefficients $ G $ |
| + | is the maximum integer $ p $ |
| + | for which there exists closed subsets $ A $ |
| + | of $ X $ |
| + | such that the cohomology groups $ H ^ {p} ( X , A ; G ) $ |
| + | are non-zero. The homological dimension $ h \mathop{\rm dim} _ {G} X $ |
| + | is similarly defined (cf. [[Homological dimension of a space|Homological dimension of a space]]). Finite Lebesgue dimension (covering dimension) is the same as $ \mathop{\rm dim} _ {G} $( |
| + | or $ h \mathop{\rm dim} _ {G} $) |
| + | if $ G $ |
| + | is the subgroup of the integers (or real numbers modulo 1). In Euclidean space $ X \subset \mathbf R ^ {n} $ |
| + | the equation $ \mathop{\rm dim} _ {G} X = p $ |
| + | is equivalent to the property that $ X $ |
| + | is locally linked by $ ( n - p - 1 ) $- |
| + | dimensional cycles (with coefficients in $ G $). |
| + | For paracompact spaces $ X $, |
| + | the inequality $ \mathop{\rm dim} _ {G} X \leq p $ |
| + | is equivalent to the existence of soft resolutions (cf. [[Soft sheaf|Soft sheaf]] and [[Resolution|Resolution]]) for $ G $ |
| + | of length $ p $. |
| + | Since soft sheaves are acyclic, in this way a connection is established with the general definition of dimension in homological algebra; for example, the injective (or projective) dimension of a module is $ \leq p $ |
| + | if it has an injective (or projective) resolution of length $ p $; |
| + | the global dimension of a ring is the maximum of the injective (or projective) dimensions of the modules over the ring and is the analogue of the Lebesgue dimension of $ X $. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> P.S. Aleksandrov, ''Ann. of Math.'' (1929) pp. 101–187 , '''30'''</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> P.S. Aleksandrov, "Dimensionstheorie: Ein Beitrag zur Geometrie der abgeschlossenen Mengen" ''Math. Ann.'' , '''106''' (1932) pp. 161–238</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> P.S. Aleksandrov, "An introduction to homological dimension theory and general combinatorial topology" , Moscow (1975) (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A.E. [A.E. Kharlap] Harlap, "Local homology and cohomology, homology dimension and generalized manifolds" ''Math. USSR Sb.'' , '''25''' : 3 (1975) pp. 323–349 ''Mat. Sb.'' , '''96''' : 3 (1975) pp. 347–373</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> V.I. Kuz'minov, "Homological dimension theory" ''Russian Math. Surveys'' , '''29''' : 5 (1968) pp. 1–45 ''Uspekhi Mat. Nauk'' , '''23''' : 5 (1968) pp. 3–49</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> G.E. Bredon, "Sheaf theory" , McGraw-Hill (1967)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956)</TD></TR></table> | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> P.S. Aleksandrov, ''Ann. of Math.'' (1929) pp. 101–187 , '''30'''</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> P.S. Aleksandrov, "Dimensionstheorie: Ein Beitrag zur Geometrie der abgeschlossenen Mengen" ''Math. Ann.'' , '''106''' (1932) pp. 161–238</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> P.S. Aleksandrov, "An introduction to homological dimension theory and general combinatorial topology" , Moscow (1975) (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A.E. [A.E. Kharlap] Harlap, "Local homology and cohomology, homology dimension and generalized manifolds" ''Math. USSR Sb.'' , '''25''' : 3 (1975) pp. 323–349 ''Mat. Sb.'' , '''96''' : 3 (1975) pp. 347–373 {{MR|}} {{ZBL|0325.57002}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> V.I. Kuz'minov, "Homological dimension theory" ''Russian Math. Surveys'' , '''29''' : 5 (1968) pp. 1–45 ''Uspekhi Mat. Nauk'' , '''23''' : 5 (1968) pp. 3–49 {{MR|}} {{ZBL|0187.20103}} </TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> G.E. Bredon, "Sheaf theory" , McGraw-Hill (1967) {{MR|0221500}} {{ZBL|0158.20505}} </TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956) {{MR|0077480}} {{ZBL|0075.24305}} </TD></TR></table> |
| | | |
| ''E.G. Sklyarenko'' | | ''E.G. Sklyarenko'' |
| | | |
− | The cohomological dimension of a scheme is the analogue of the notion of the cohomological dimension of a topological space for an algebraic variety or a scheme with a selected cohomology theory. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305024.png" /> be an algebraic variety or a Noetherian scheme of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305025.png" />. The cohomological dimension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305026.png" /> is defined to be the integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305027.png" /> equal to the infimum of all those <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305028.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305029.png" /> for all Abelian sheaves <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305030.png" /> on the topological space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305031.png" /> when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305032.png" />. The inequality | + | The cohomological dimension of a scheme is the analogue of the notion of the cohomological dimension of a topological space for an algebraic variety or a scheme with a selected cohomology theory. Let $ X $ |
| + | be an algebraic variety or a Noetherian scheme of dimension $ n $. |
| + | The cohomological dimension of $ X $ |
| + | is defined to be the integer $ \mathop{\rm cd} ( X) $ |
| + | equal to the infimum of all those $ i $ |
| + | for which $ H ^ {j} ( X , {\mathcal F} ) = 0 $ |
| + | for all Abelian sheaves $ {\mathcal F} $ |
| + | on the topological space $ X $ |
| + | when $ j > i $. |
| + | The inequality |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305033.png" /></td> </tr></table>
| + | $$ |
| + | \mathop{\rm cd} ( X) \leq n |
| + | $$ |
| | | |
− | holds. The coherent cohomological dimension of the scheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305034.png" /> is the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305035.png" /> equal to the infimum of those <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305036.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305037.png" /> for all coherent algebraic sheaves <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305038.png" /> (cf. [[Coherent algebraic sheaf|Coherent algebraic sheaf]]) on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305039.png" /> when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305040.png" />. By definition, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305041.png" />. By Serre's theorem, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305042.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305043.png" /> is an affine scheme. On the other hand, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305044.png" /> is an algebraic variety over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305045.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305046.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305047.png" /> is proper over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305048.png" /> (Lichtenbaum's theorem, see [[#References|[3]]]). | + | holds. The coherent cohomological dimension of the scheme $ X $ |
| + | is the number $ \mathop{\rm cohcd} ( X) $ |
| + | equal to the infimum of those $ i $ |
| + | for which $ H ^ {j} ( X , {\mathcal F} ) = 0 $ |
| + | for all coherent algebraic sheaves $ {\mathcal F} $( |
| + | cf. [[Coherent algebraic sheaf|Coherent algebraic sheaf]]) on $ X $ |
| + | when $ j > i $. |
| + | By definition, $ \mathop{\rm cohcd} ( X) \leq \mathop{\rm cd} ( X) $. |
| + | By Serre's theorem, $ \mathop{\rm cohcd} ( X) = 0 $ |
| + | if and only if $ X $ |
| + | is an affine scheme. On the other hand, if $ X $ |
| + | is an algebraic variety over a field $ k $, |
| + | then $ \mathop{\rm cohcd} ( X) = n $ |
| + | if and only if $ X $ |
| + | is proper over $ k $( |
| + | Lichtenbaum's theorem, see [[#References|[3]]]). |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305049.png" /> be a proper scheme over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305050.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305051.png" /> be a closed subscheme of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305052.png" /> of codimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305053.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305054.png" />. Then the following statements hold ([[#References|[2]]]–[[#References|[4]]]). | + | Let $ X $ |
| + | be a proper scheme over a field $ k $, |
| + | let $ Y $ |
| + | be a closed subscheme of $ X $ |
| + | of codimension $ d $ |
| + | and let $ U = X \setminus Y $. |
| + | Then the following statements hold ([[#References|[2]]]–[[#References|[4]]]). |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305055.png" /> is the set-theoretic complete intersection of ample divisors on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305056.png" />, then | + | If $ Y $ |
| + | is the set-theoretic complete intersection of ample divisors on $ X $, |
| + | then |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305057.png" /></td> </tr></table>
| + | $$ |
| + | \mathop{\rm cohcd} ( U) \leq d - 1 . |
| + | $$ |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305058.png" /> is a projective Cohen–Macaulay variety (for instance, a non-singular projective variety) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305059.png" /> is zero-dimensional, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305060.png" />. The condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305061.png" /> is equivalent to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305062.png" /> being connected. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305063.png" /> is a projective space and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305064.png" /> is connected and has dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305065.png" />, then | + | If $ X $ |
| + | is a projective Cohen–Macaulay variety (for instance, a non-singular projective variety) and $ Y $ |
| + | is zero-dimensional, then $ \mathop{\rm cohcd} ( U) = n - 1 $. |
| + | The condition $ \mathop{\rm cohcd} ( U) \leq n - 2 $ |
| + | is equivalent to $ Y $ |
| + | being connected. If $ X = P ^ {n} $ |
| + | is a projective space and $ Y $ |
| + | is connected and has dimension $ \geq 1 $, |
| + | then |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305066.png" /></td> </tr></table> | + | $$ |
| + | \mathop{\rm cohcd} ( U) < n - 1 . |
| + | $$ |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305067.png" /> is a complex algebraic variety, then one can consider the cohomological dimension of the corresponding topological space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305068.png" />. In the general case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305069.png" /> is a Noetherian scheme, the analogue of cohomological dimension is the notion of the étale cohomological dimension of the scheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305070.png" />. More precisely, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305071.png" /> be the [[Etale topology|étale topology]] of the Grothendieck scheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305072.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305073.png" /> be a prime number. By the cohomological <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305075.png" />-dimension of the scheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305076.png" /> (or the étale cohomological dimension) one means the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305077.png" /> equal to the infimum of those <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305078.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305079.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305080.png" />-torsion Abelian sheaves <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305081.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305082.png" /> when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305083.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305084.png" /> is an affine scheme, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305085.png" /> is also called the cohomological dimension of the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305086.png" />. In particular, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305087.png" /> is a field, then the notion of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305088.png" /> is the same as that of the cohomological dimension of a field as studied in the theory of [[Galois cohomology|Galois cohomology]]. | + | If $ X $ |
| + | is a complex algebraic variety, then one can consider the cohomological dimension of the corresponding topological space $ X ( C) $. |
| + | In the general case when $ X $ |
| + | is a Noetherian scheme, the analogue of cohomological dimension is the notion of the étale cohomological dimension of the scheme $ X $. |
| + | More precisely, let $ X _ {\textrm{ et } } $ |
| + | be the [[Etale topology|étale topology]] of the Grothendieck scheme $ X $ |
| + | and let $ l $ |
| + | be a prime number. By the cohomological $ l $- |
| + | dimension of the scheme $ X $( |
| + | or the étale cohomological dimension) one means the number $ \mathop{\rm cd} _ {l} ( X) $ |
| + | equal to the infimum of those $ i $ |
| + | for which $ H ^ {j} ( X _ {\textrm{ et } } , {\mathcal F} ) = 0 $ |
| + | for all $ l $- |
| + | torsion Abelian sheaves $ {\mathcal F} $ |
| + | on $ X _ {\textrm{ et } } $ |
| + | when $ j > i $. |
| + | If $ X = \mathop{\rm Spec} A $ |
| + | is an affine scheme, then $ \mathop{\rm cd} _ {l} ( \mathop{\rm Spec} A ) $ |
| + | is also called the cohomological dimension of the ring $ A $. |
| + | In particular, if $ A $ |
| + | is a field, then the notion of $ \mathop{\rm cd} _ {l} ( A) $ |
| + | is the same as that of the cohomological dimension of a field as studied in the theory of [[Galois cohomology|Galois cohomology]]. |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305089.png" /> is an algebraic variety of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305090.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305091.png" /> and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305092.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305093.png" />. In particular, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305094.png" /> is a separably closed field, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305095.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305096.png" /> is an affine algebraic variety over the separably closed field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305097.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305098.png" />. | + | If $ X $ |
| + | is an algebraic variety of dimension $ n $ |
| + | over a field $ k $ |
| + | and if $ l \neq \mathop{\rm char} k $, |
| + | then $ \mathop{\rm cd} _ {l} ( X) \leq 2 n + \mathop{\rm cd} _ {l} ( k) $. |
| + | In particular, if $ k $ |
| + | is a separably closed field, then $ \mathop{\rm cd} _ {l} ( X) \leq 2 n $. |
| + | If $ X $ |
| + | is an affine algebraic variety over the separably closed field $ k $, |
| + | then $ \mathop{\rm cd} _ {l} ( X) \leq \mathop{\rm dim} X $. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305099.png" /> be a field of finite characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c023050100.png" />; then for any Noetherian scheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c023050101.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c023050102.png" />, the inequality | + | Let $ k $ |
| + | be a field of finite characteristic $ p $; |
| + | then for any Noetherian scheme $ X $ |
| + | over $ k $, |
| + | the inequality |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c023050103.png" /></td> </tr></table>
| + | $$ |
| + | \mathop{\rm cd} _ {p} ( X) \leq \mathop{\rm cohcd} ( X) + 1 |
| + | $$ |
| | | |
− | holds. In particular, for any Noetherian commutative ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c023050104.png" />, | + | holds. In particular, for any Noetherian commutative ring $ A $, |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c023050105.png" /></td> </tr></table>
| + | $$ |
| + | \mathop{\rm cd} _ {p} ( A) \leq 1 . |
| + | $$ |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c023050106.png" /> is a quasi-projective algebraic variety over the separably closed field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c023050107.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c023050108.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c023050109.png" /> is the characteristic of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c023050110.png" />. | + | If $ X $ |
| + | is a quasi-projective algebraic variety over the separably closed field $ k $, |
| + | then $ \mathop{\rm cd} _ {p} ( X) \leq \mathop{\rm dim} X $, |
| + | where $ p $ |
| + | is the characteristic of $ k $. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Grothendieck, "Sur quelques points d'algèbre homologique" ''Tohôku Math. J.'' , '''9''' (1957) pp. 119–221</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R. Hartshorne, "Cohomological dimension of algebraic varieties" ''Ann. of Math.'' , '''88''' (1968) pp. 403–450</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> R. Hartshorne, "Ample subvarieties of algebraic varieties" , Springer (1970)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> R. Hartshorne, "Cohomology of non-complete algebraic varieties" ''Compositio Math.'' (1971) pp. 257–264</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> M. Artin (ed.) A. Grothendieck (ed.) J.-L. Verdier (ed.) , ''Théorie des topos et cohomologie étale des schemas (SGA 4, vol. II, III)'' , ''Lect. notes in math.'' , '''270; 305''' , Springer (1972–1973)</TD></TR></table> | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Grothendieck, "Sur quelques points d'algèbre homologique" ''Tohôku Math. J.'' , '''9''' (1957) pp. 119–221 {{MR|0102537}} {{ZBL|}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R. Hartshorne, "Cohomological dimension of algebraic varieties" ''Ann. of Math.'' , '''88''' (1968) pp. 403–450 {{MR|0232780}} {{ZBL|0169.23302}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> R. Hartshorne, "Ample subvarieties of algebraic varieties" , Springer (1970) {{MR|0282977}} {{ZBL|0208.48901}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> R. Hartshorne, "Cohomology of non-complete algebraic varieties" ''Compositio Math.'' (1971) pp. 257–264 {{MR|0302649}} {{ZBL|0221.14014}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> M. Artin (ed.) A. Grothendieck (ed.) J.-L. Verdier (ed.) , ''Théorie des topos et cohomologie étale des schemas (SGA 4, vol. II, III)'' , ''Lect. notes in math.'' , '''270; 305''' , Springer (1972–1973) {{MR|1080173}} {{MR|1080172}} {{MR|0717602}} {{MR|0717586}} {{MR|0505104}} {{MR|0505101}} {{ZBL|}} </TD></TR></table> |
| | | |
| ''I.V. Dolgachev'' | | ''I.V. Dolgachev'' |
| | | |
| ====Comments==== | | ====Comments==== |
− |
| |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> B. Iversen, "Cohomology of sheaves" , Springer (1986)</TD></TR></table> | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> B. Iversen, "Cohomology of sheaves" , Springer (1986) {{MR|0842190}} {{ZBL|0559.55001}} </TD></TR></table> |
The cohomological dimension $ ( \mathop{\rm dim} _ {G} X ) $
of a topological space $ X $
relative to the group of coefficients $ G $
is the maximum integer $ p $
for which there exists closed subsets $ A $
of $ X $
such that the cohomology groups $ H ^ {p} ( X , A ; G ) $
are non-zero. The homological dimension $ h \mathop{\rm dim} _ {G} X $
is similarly defined (cf. Homological dimension of a space). Finite Lebesgue dimension (covering dimension) is the same as $ \mathop{\rm dim} _ {G} $(
or $ h \mathop{\rm dim} _ {G} $)
if $ G $
is the subgroup of the integers (or real numbers modulo 1). In Euclidean space $ X \subset \mathbf R ^ {n} $
the equation $ \mathop{\rm dim} _ {G} X = p $
is equivalent to the property that $ X $
is locally linked by $ ( n - p - 1 ) $-
dimensional cycles (with coefficients in $ G $).
For paracompact spaces $ X $,
the inequality $ \mathop{\rm dim} _ {G} X \leq p $
is equivalent to the existence of soft resolutions (cf. Soft sheaf and Resolution) for $ G $
of length $ p $.
Since soft sheaves are acyclic, in this way a connection is established with the general definition of dimension in homological algebra; for example, the injective (or projective) dimension of a module is $ \leq p $
if it has an injective (or projective) resolution of length $ p $;
the global dimension of a ring is the maximum of the injective (or projective) dimensions of the modules over the ring and is the analogue of the Lebesgue dimension of $ X $.
References
[1] | P.S. Aleksandrov, Ann. of Math. (1929) pp. 101–187 , 30 |
[2] | P.S. Aleksandrov, "Dimensionstheorie: Ein Beitrag zur Geometrie der abgeschlossenen Mengen" Math. Ann. , 106 (1932) pp. 161–238 |
[3] | P.S. Aleksandrov, "An introduction to homological dimension theory and general combinatorial topology" , Moscow (1975) (In Russian) |
[4] | A.E. [A.E. Kharlap] Harlap, "Local homology and cohomology, homology dimension and generalized manifolds" Math. USSR Sb. , 25 : 3 (1975) pp. 323–349 Mat. Sb. , 96 : 3 (1975) pp. 347–373 Zbl 0325.57002 |
[5] | V.I. Kuz'minov, "Homological dimension theory" Russian Math. Surveys , 29 : 5 (1968) pp. 1–45 Uspekhi Mat. Nauk , 23 : 5 (1968) pp. 3–49 Zbl 0187.20103 |
[6] | G.E. Bredon, "Sheaf theory" , McGraw-Hill (1967) MR0221500 Zbl 0158.20505 |
[7] | H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956) MR0077480 Zbl 0075.24305 |
E.G. Sklyarenko
The cohomological dimension of a scheme is the analogue of the notion of the cohomological dimension of a topological space for an algebraic variety or a scheme with a selected cohomology theory. Let $ X $
be an algebraic variety or a Noetherian scheme of dimension $ n $.
The cohomological dimension of $ X $
is defined to be the integer $ \mathop{\rm cd} ( X) $
equal to the infimum of all those $ i $
for which $ H ^ {j} ( X , {\mathcal F} ) = 0 $
for all Abelian sheaves $ {\mathcal F} $
on the topological space $ X $
when $ j > i $.
The inequality
$$
\mathop{\rm cd} ( X) \leq n
$$
holds. The coherent cohomological dimension of the scheme $ X $
is the number $ \mathop{\rm cohcd} ( X) $
equal to the infimum of those $ i $
for which $ H ^ {j} ( X , {\mathcal F} ) = 0 $
for all coherent algebraic sheaves $ {\mathcal F} $(
cf. Coherent algebraic sheaf) on $ X $
when $ j > i $.
By definition, $ \mathop{\rm cohcd} ( X) \leq \mathop{\rm cd} ( X) $.
By Serre's theorem, $ \mathop{\rm cohcd} ( X) = 0 $
if and only if $ X $
is an affine scheme. On the other hand, if $ X $
is an algebraic variety over a field $ k $,
then $ \mathop{\rm cohcd} ( X) = n $
if and only if $ X $
is proper over $ k $(
Lichtenbaum's theorem, see [3]).
Let $ X $
be a proper scheme over a field $ k $,
let $ Y $
be a closed subscheme of $ X $
of codimension $ d $
and let $ U = X \setminus Y $.
Then the following statements hold ([2]–[4]).
If $ Y $
is the set-theoretic complete intersection of ample divisors on $ X $,
then
$$
\mathop{\rm cohcd} ( U) \leq d - 1 .
$$
If $ X $
is a projective Cohen–Macaulay variety (for instance, a non-singular projective variety) and $ Y $
is zero-dimensional, then $ \mathop{\rm cohcd} ( U) = n - 1 $.
The condition $ \mathop{\rm cohcd} ( U) \leq n - 2 $
is equivalent to $ Y $
being connected. If $ X = P ^ {n} $
is a projective space and $ Y $
is connected and has dimension $ \geq 1 $,
then
$$
\mathop{\rm cohcd} ( U) < n - 1 .
$$
If $ X $
is a complex algebraic variety, then one can consider the cohomological dimension of the corresponding topological space $ X ( C) $.
In the general case when $ X $
is a Noetherian scheme, the analogue of cohomological dimension is the notion of the étale cohomological dimension of the scheme $ X $.
More precisely, let $ X _ {\textrm{ et } } $
be the étale topology of the Grothendieck scheme $ X $
and let $ l $
be a prime number. By the cohomological $ l $-
dimension of the scheme $ X $(
or the étale cohomological dimension) one means the number $ \mathop{\rm cd} _ {l} ( X) $
equal to the infimum of those $ i $
for which $ H ^ {j} ( X _ {\textrm{ et } } , {\mathcal F} ) = 0 $
for all $ l $-
torsion Abelian sheaves $ {\mathcal F} $
on $ X _ {\textrm{ et } } $
when $ j > i $.
If $ X = \mathop{\rm Spec} A $
is an affine scheme, then $ \mathop{\rm cd} _ {l} ( \mathop{\rm Spec} A ) $
is also called the cohomological dimension of the ring $ A $.
In particular, if $ A $
is a field, then the notion of $ \mathop{\rm cd} _ {l} ( A) $
is the same as that of the cohomological dimension of a field as studied in the theory of Galois cohomology.
If $ X $
is an algebraic variety of dimension $ n $
over a field $ k $
and if $ l \neq \mathop{\rm char} k $,
then $ \mathop{\rm cd} _ {l} ( X) \leq 2 n + \mathop{\rm cd} _ {l} ( k) $.
In particular, if $ k $
is a separably closed field, then $ \mathop{\rm cd} _ {l} ( X) \leq 2 n $.
If $ X $
is an affine algebraic variety over the separably closed field $ k $,
then $ \mathop{\rm cd} _ {l} ( X) \leq \mathop{\rm dim} X $.
Let $ k $
be a field of finite characteristic $ p $;
then for any Noetherian scheme $ X $
over $ k $,
the inequality
$$
\mathop{\rm cd} _ {p} ( X) \leq \mathop{\rm cohcd} ( X) + 1
$$
holds. In particular, for any Noetherian commutative ring $ A $,
$$
\mathop{\rm cd} _ {p} ( A) \leq 1 .
$$
If $ X $
is a quasi-projective algebraic variety over the separably closed field $ k $,
then $ \mathop{\rm cd} _ {p} ( X) \leq \mathop{\rm dim} X $,
where $ p $
is the characteristic of $ k $.
References
[1] | A. Grothendieck, "Sur quelques points d'algèbre homologique" Tohôku Math. J. , 9 (1957) pp. 119–221 MR0102537 |
[2] | R. Hartshorne, "Cohomological dimension of algebraic varieties" Ann. of Math. , 88 (1968) pp. 403–450 MR0232780 Zbl 0169.23302 |
[3] | R. Hartshorne, "Ample subvarieties of algebraic varieties" , Springer (1970) MR0282977 Zbl 0208.48901 |
[4] | R. Hartshorne, "Cohomology of non-complete algebraic varieties" Compositio Math. (1971) pp. 257–264 MR0302649 Zbl 0221.14014 |
[5] | M. Artin (ed.) A. Grothendieck (ed.) J.-L. Verdier (ed.) , Théorie des topos et cohomologie étale des schemas (SGA 4, vol. II, III) , Lect. notes in math. , 270; 305 , Springer (1972–1973) MR1080173 MR1080172 MR0717602 MR0717586 MR0505104 MR0505101 |
I.V. Dolgachev
References