|
|
(3 intermediate revisions by the same user not shown) |
Line 3: |
Line 3: |
| A field with a finite number of elements. First considered by E. Galois [[#References|[1]]]. | | A field with a finite number of elements. First considered by E. Galois [[#References|[1]]]. |
| | | |
− | The number of elements of any Galois field is a power <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g0431401.png" /> of a prime number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g0431402.png" />, which is the characteristic of this field. For any prime number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g0431403.png" /> and any natural number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g0431404.png" /> there exists a (unique up to an isomorphism) field of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g0431405.png" /> elements. It is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g0431406.png" /> or by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g0431407.png" />. The field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g0431408.png" /> contains the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g0431409.png" /> as a subfield if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314010.png" /> is divisible by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314011.png" />. In particular, any field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314012.png" /> contains the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314013.png" />, which is called the prime field of characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314015.png" />. The field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314016.png" /> is isomorphic to the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314017.png" /> of residue classes of the ring of integers modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314018.png" />. In any fixed [[Algebraic closure|algebraic closure]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314019.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314020.png" /> there exists exactly one subfield <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314021.png" /> for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314022.png" />. The correspondence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314023.png" /> is an isomorphism between the lattice of natural numbers with respect to division and the lattice of finite algebraic extensions (in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314024.png" />) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314025.png" /> with respect to inclusion. The lattice of finite algebraic extensions of any Galois field within its fixed algebraic closure is such a lattice. | + | The number of elements of any finite field is a power $p^n$ of a prime number $p$, which is the [[Characteristic of a field|characteristic]] of this field. For any prime number $p$ and any natural number $n$ there exists a (unique up to an isomorphism) field of $p^n$ elements. It is denoted by $\mathrm{GF}(p^n)$ or by $\mathbb{F}_{p^n}$. The field $\mathrm{GF}(p^m)$ contains the field $\mathrm{GF}(p^n)$ as a subfield if and only if $m$ is divisible by $n$. In particular, any field $\mathrm{GF}(p^n)$ contains the field $\mathrm{GF}(p)$, which is called the [[prime field]] of characteristic $p$. The field $\mathrm{GF}(p)$ is isomorphic to the field $\mathbb{Z}/p\mathbb{Z}$ of residue classes of the ring of integers modulo $p$. In any fixed [[Algebraic closure|algebraic closure]] $\Omega$ of $\mathrm{GF}(p)$ there exists exactly one subfield $\mathrm{GF}(p^n)$ for each $n$. The correspondence $n \leftrightarrow \mathrm{GF}(p^n)$ is an isomorphism between the lattice of natural numbers with respect to division and the lattice of finite algebraic extensions (in $\Omega$) of $\mathrm{GF}(p)$ with respect to inclusion. The lattice of finite algebraic extensions of any Galois field within its fixed algebraic closure is such a lattice. |
| | | |
− | The algebraic extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314026.png" /> is simple, i.e. there exists a primitive element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314027.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314028.png" />. Such an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314029.png" /> will be any root of any irreducible polynomial of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314030.png" /> from the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314031.png" />. The number of primitive elements of the extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314032.png" /> equals | + | The algebraic extension $\mathrm{GF}(p^n)/\mathrm{GF}(p)$ is simple, i.e. there exists a primitive element $\alpha \in \mathrm{GF}(p^n)$ such that $\mathrm{GF}(p^n) = \mathrm{GF}(p)(\alpha)$. Such an $\alpha$ will be any root of any irreducible polynomial of degree $n$ from the ring $\mathrm{GF}(p)[X]$. The number of primitive elements of the extension $\mathrm{GF}(p^n)/\mathrm{GF}(p)$ equals |
| + | $$ |
| + | \sum_{d|n} \mu(d) p^{n/d} |
| + | $$ |
| + | where $\mu$ is the [[Möbius function|Möbius function]]. The additive group of the field $\mathrm{GF}(p^n)$ is naturally endowed with the structure of an $n$-dimensional vector space over $\mathrm{GF}(p)$. As a basis one may take $1,\alpha,\ldots,\alpha^{n-1}$. The non-zero elements of $\mathrm{GF}(p^n)$ form a multiplicative group, $\mathrm{GF}(p^n)^*$, of order $p^n-1$, i.e. each element of $\mathrm{GF}(p^n)^*$ is a root of the polynomial $X^{p^n-1}-1$. The group $\mathrm{GF}(p^n)^*$ is cyclic, and its generators are the primitive roots of unity of degree $p^n-1$, the number of which is $\phi(p^n-1)$, where $\phi$ is the [[Euler function|Euler function]]. Each primitive root of unity of degree $p^n-1$ is a primitive element of the extension $\mathrm{GF}(p^n)/\mathrm{GF}(p)$, but the converse is not true. More exactly, out of the |
| + | $$ |
| + | \frac{1}{n} \sum_{d|n} \mu(d) p^{n/d} |
| + | $$ |
| + | irreducible unitary polynomials of degree $n$ over $\mathrm{GF}(p)$ there are $\phi(p^n-1)/n$ polynomials of which the roots are generators of $\mathrm{GF}(p^n)$. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314033.png" /></td> </tr></table>
| + | The set of elements of $\mathrm{GF}(p^n)$ coincides with the set of roots of the polynomial $X^{p^n} - X$ in $\Omega$, i.e. $\mathrm{GF}(p^n)$ is characterized as the subfield of elements from $\Omega$ that are invariant with respect to the automorphism $\tau : x \mapsto x^{p^n}$, which is known as the Frobenius automorphism. If $\mathrm{GF}(p^m) \supset \mathrm{GF}(p^n)$, the extension $\mathrm{GF}(p^m)/\mathrm{GF}(p^n)$ is normal (cf. [[Extension of a field|Extension of a field]]), and its [[Galois group|Galois group]] $\mathrm{Gal}\left({\mathrm{GF}(p^m)/\mathrm{GF}(p^n)}\right)$ is cyclic of order $m/n$. The automorphism $\tau$ may be taken as the generator of $\mathrm{Gal}\left({\mathrm{GF}(p^m)/\mathrm{GF}(p^n)}\right)$. |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314034.png" /> is the [[Möbius function|Möbius function]]. The additive group of the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314035.png" /> is naturally endowed with the structure of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314036.png" />-dimensional vector space over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314037.png" />. As a basis one may take <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314038.png" />. The non-zero elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314039.png" /> form a multiplicative group, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314040.png" />, of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314041.png" />, i.e. each element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314042.png" /> is a root of the polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314043.png" />. The group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314044.png" /> is cyclic, and its generators are the primitive roots of unity of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314045.png" />, the number of which is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314046.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314047.png" /> is the [[Euler function|Euler function]]. Each primitive root of unity of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314048.png" /> is a primitive element of the extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314049.png" />, but the converse is not true. More exactly, out of the
| + | ====References==== |
− | | + | <table> |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314050.png" /></td> </tr></table> | + | <TR><TD valign="top">[1]</TD> <TD valign="top"> E. Galois, "Écrits et mémoires d'E. Galois" , Gauthier-Villars (1962)</TD></TR> |
− | | + | <TR><TD valign="top">[2]</TD> <TD valign="top"> B.L. van der Waerden, "Algebra" , '''1–2''' , Springer (1967–1971) (Translated from German)</TD></TR> |
− | irreducible unitary polynomials of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314051.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314052.png" /> there are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314053.png" /> polynomials of which the roots are generators of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314054.png" />.
| + | <TR><TD valign="top">[3]</TD> <TD valign="top"> N.G. [N.G. Chebotarev] Tschebotaröw, "Grundzüge der Galois'schen Theorie" , Noordhoff (1950) (Translated from Russian)</TD></TR> |
| + | <TR><TD valign="top">[4]</TD> <TD valign="top"> N. Bourbaki, "Algebra" , ''Elements of mathematics'' , '''1''' , Springer (1989) pp. Chapt. 1–3 (Translated from French)</TD></TR> |
| + | </table> |
| | | |
− | The set of elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314055.png" /> coincides with the set of roots of the polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314056.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314057.png" />, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314058.png" /> is characterized as the subfield of elements from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314059.png" /> that are invariant with respect to the automorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314060.png" />, which is known as the Frobenius automorphism. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314061.png" />, the extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314062.png" /> is normal (cf. [[Extension of a field|Extension of a field]]), and its [[Galois group|Galois group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314063.png" /> is cyclic of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314064.png" />. The automorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314065.png" /> may be taken as the generator of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043140/g04314066.png" />.
| + | {{TEX|done}} |
| | | |
− | ====References====
| + | [[Category:Field theory and polynomials]] |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> E. Galois, "Écrits et mémoires d'E. Galois" , Gauthier-Villars (1962)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> B.L. van der Waerden, "Algebra" , '''1–2''' , Springer (1967–1971) (Translated from German)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> N.G. [N.G. Chebotarev] Tschebotaröw, "Grundzüge der Galois'schen Theorie" , Noordhoff (1950) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> N. Bourbaki, "Algebra" , ''Elements of mathematics'' , '''1''' , Springer (1989) pp. Chapt. 1–3 (Translated from French)</TD></TR></table>
| |
finite field
A field with a finite number of elements. First considered by E. Galois [1].
The number of elements of any finite field is a power $p^n$ of a prime number $p$, which is the characteristic of this field. For any prime number $p$ and any natural number $n$ there exists a (unique up to an isomorphism) field of $p^n$ elements. It is denoted by $\mathrm{GF}(p^n)$ or by $\mathbb{F}_{p^n}$. The field $\mathrm{GF}(p^m)$ contains the field $\mathrm{GF}(p^n)$ as a subfield if and only if $m$ is divisible by $n$. In particular, any field $\mathrm{GF}(p^n)$ contains the field $\mathrm{GF}(p)$, which is called the prime field of characteristic $p$. The field $\mathrm{GF}(p)$ is isomorphic to the field $\mathbb{Z}/p\mathbb{Z}$ of residue classes of the ring of integers modulo $p$. In any fixed algebraic closure $\Omega$ of $\mathrm{GF}(p)$ there exists exactly one subfield $\mathrm{GF}(p^n)$ for each $n$. The correspondence $n \leftrightarrow \mathrm{GF}(p^n)$ is an isomorphism between the lattice of natural numbers with respect to division and the lattice of finite algebraic extensions (in $\Omega$) of $\mathrm{GF}(p)$ with respect to inclusion. The lattice of finite algebraic extensions of any Galois field within its fixed algebraic closure is such a lattice.
The algebraic extension $\mathrm{GF}(p^n)/\mathrm{GF}(p)$ is simple, i.e. there exists a primitive element $\alpha \in \mathrm{GF}(p^n)$ such that $\mathrm{GF}(p^n) = \mathrm{GF}(p)(\alpha)$. Such an $\alpha$ will be any root of any irreducible polynomial of degree $n$ from the ring $\mathrm{GF}(p)[X]$. The number of primitive elements of the extension $\mathrm{GF}(p^n)/\mathrm{GF}(p)$ equals
$$
\sum_{d|n} \mu(d) p^{n/d}
$$
where $\mu$ is the Möbius function. The additive group of the field $\mathrm{GF}(p^n)$ is naturally endowed with the structure of an $n$-dimensional vector space over $\mathrm{GF}(p)$. As a basis one may take $1,\alpha,\ldots,\alpha^{n-1}$. The non-zero elements of $\mathrm{GF}(p^n)$ form a multiplicative group, $\mathrm{GF}(p^n)^*$, of order $p^n-1$, i.e. each element of $\mathrm{GF}(p^n)^*$ is a root of the polynomial $X^{p^n-1}-1$. The group $\mathrm{GF}(p^n)^*$ is cyclic, and its generators are the primitive roots of unity of degree $p^n-1$, the number of which is $\phi(p^n-1)$, where $\phi$ is the Euler function. Each primitive root of unity of degree $p^n-1$ is a primitive element of the extension $\mathrm{GF}(p^n)/\mathrm{GF}(p)$, but the converse is not true. More exactly, out of the
$$
\frac{1}{n} \sum_{d|n} \mu(d) p^{n/d}
$$
irreducible unitary polynomials of degree $n$ over $\mathrm{GF}(p)$ there are $\phi(p^n-1)/n$ polynomials of which the roots are generators of $\mathrm{GF}(p^n)$.
The set of elements of $\mathrm{GF}(p^n)$ coincides with the set of roots of the polynomial $X^{p^n} - X$ in $\Omega$, i.e. $\mathrm{GF}(p^n)$ is characterized as the subfield of elements from $\Omega$ that are invariant with respect to the automorphism $\tau : x \mapsto x^{p^n}$, which is known as the Frobenius automorphism. If $\mathrm{GF}(p^m) \supset \mathrm{GF}(p^n)$, the extension $\mathrm{GF}(p^m)/\mathrm{GF}(p^n)$ is normal (cf. Extension of a field), and its Galois group $\mathrm{Gal}\left({\mathrm{GF}(p^m)/\mathrm{GF}(p^n)}\right)$ is cyclic of order $m/n$. The automorphism $\tau$ may be taken as the generator of $\mathrm{Gal}\left({\mathrm{GF}(p^m)/\mathrm{GF}(p^n)}\right)$.
References
[1] | E. Galois, "Écrits et mémoires d'E. Galois" , Gauthier-Villars (1962) |
[2] | B.L. van der Waerden, "Algebra" , 1–2 , Springer (1967–1971) (Translated from German) |
[3] | N.G. [N.G. Chebotarev] Tschebotaröw, "Grundzüge der Galois'schen Theorie" , Noordhoff (1950) (Translated from Russian) |
[4] | N. Bourbaki, "Algebra" , Elements of mathematics , 1 , Springer (1989) pp. Chapt. 1–3 (Translated from French) |