Difference between revisions of "Wilf quadrature formulas"
(Importing text file) |
m (fix tex) |
||
(2 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | <!--This article has been texified automatically. Since there was no Nroff source code for this article, | ||
+ | the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist | ||
+ | was used. | ||
+ | |||
+ | Out of 41 formulas, 40 were replaced by TEX code.--> | ||
+ | |||
+ | {{TEX|done}}{{MSC|65D32}} | ||
+ | |||
''Wilf formulas'' | ''Wilf formulas'' | ||
Quadrature formulas (cf. [[Quadrature formula|Quadrature formula]]) constructed from a [[Hilbert space|Hilbert space]] setting. | Quadrature formulas (cf. [[Quadrature formula|Quadrature formula]]) constructed from a [[Hilbert space|Hilbert space]] setting. | ||
− | Let | + | Let $\mathcal{H}$ be a Hilbert space of continuous functions such that $I [ f ] = \int _ { a } ^ { b } f ( x ) d x$ and $L _ { \nu } [ f ] = f ( x _ { \nu } )$ are continuous functionals; let $R = I - \sum _ { \nu = 1 } ^ { n } \alpha _ { \nu } L _ { \nu }$ for $( \alpha _ { 1 } , \dots , \alpha _ { n } ) \in \mathbf{C} ^ { n }$. Riesz's representation theorem guarantees the existence of an $r \in \mathcal{H}$ such that $R [ f ] = ( r , f )$. By the Schwarz inequality (cf. [[Bunyakovskii inequality|Bunyakovskii inequality]]) one has $|R[f]| \le \Vert R \Vert\cdot\Vert f \Vert$ in the Hilbert space norm. The formula is called optimal in $\mathcal{H}$ if $x _ { 1 } , \ldots , x _ { n }$ and $\alpha_{1} , \ldots , \alpha _ { n }$ are chosen such as to minimize $\| r\|$. If $\mathcal{H}$ has a continuously differentiable reproducing kernel $K$, then such optimal formulas necessarily satisfy [[#References|[a1]]] |
− | + | \begin{equation*} R [ K ( x _ { \nu } , . ) ] = 0 , \quad \nu = 1 , \dots , n, \end{equation*} | |
and | and | ||
− | + | \begin{equation*} R [ K _ { x } ( x _ { \nu } , . ) ] = 0 , \quad \nu = 2 , \dots , n - 1, \end{equation*} | |
− | and | + | and $\nu = 1$ ($\nu = n$) if $x _ { 1 } \neq a$ ($x _ { n } \neq b$). Here, $K _ { x }$ denotes the derivative with respect to the first variable. Formulas which satisfy these conditions are called Wilf formulas. |
− | The problem of minimizing | + | The problem of minimizing $\| r\|$ can also be considered for fixed nodes $x _ { 1 } , \ldots , x _ { n }$. These formulas are characterized by integrating the unique element of least norm in $\mathcal{H}$ which interpolates $f$ at the nodes $x _ { \nu }$. An analogous statement holds for Hermite quadrature formulas of the type $\sum _ { \nu = 1 } ^ { n } \alpha _ { \nu } f ( x _ { \nu } ) + \sum _ { \nu = 1 } ^ { n } \beta _ { \nu } f ^ { \prime } ( x _ { \nu } )$. The Wilf formula for free nodes is the Wilf formula for those fixed nodes for which $b _ { \nu } = 0$ [[#References|[a1]]], [[#References|[a3]]]. |
− | The original construction of H.S. Wilf [[#References|[a4]]] was for the Hardy space (cf. also [[Hardy spaces|Hardy spaces]]) of functions which are analytic inside the open disc with radius | + | The original construction of H.S. Wilf [[#References|[a4]]] was for the Hardy space (cf. also [[Hardy spaces|Hardy spaces]]) of functions which are analytic inside the open disc with radius $\rho$, with inner product |
− | + | \begin{equation*} ( f , g ) = \operatorname { lim } _ { \eta \rightarrow \rho - 0 } \int _ { | z | = \eta } f ( z ) \overline { g ( z ) } d s. \end{equation*} | |
− | In the Hardy space the necessary conditions have a unique solution. The nodes are in | + | In the Hardy space the necessary conditions have a unique solution. The nodes are in $[ - 1,1 ]$, the weights are positive and $\sum _ { \nu = 1 } ^ { n } \alpha _ { \nu } \leq 2$. For fixed $n$ and $\rho \rightarrow \infty$ these formulas converge to the Gaussian formulas (cf. also [[Gauss quadrature formula|Gauss quadrature formula]]) [[#References|[a1]]]. They can be constructed from a suitable rational interpolant [[#References|[a1]]], [[#References|[a3]]]. |
− | For fixed nodes | + | For fixed nodes $x _ { 1 } , \ldots , x _ { n }$, the inner product |
− | + | \begin{equation*} ( f , g ) = \sum _ { \nu = 1 } ^ { r } f ( x _ { \nu } ) g ( x _ { \nu } ) + \int _ { a } ^ { b } f ^ { ( r ) } ( x ) g ^ { ( r ) } ( x ) d x \end{equation*} | |
− | leads to the Sard quadrature formula, which is optimal in the class of functions | + | leads to the Sard quadrature formula, which is optimal in the class of functions $f$ with $\int _ { a } ^ { b } ( f ^ { ( r ) } ( x ) ) ^ { 2 } d x \leq 1$ [[#References|[a1]]], [[#References|[a2]]], [[#References|[a3]]] (see [[Optimal quadrature|Optimal quadrature]]; [[Best quadrature formula|Best quadrature formula]]). The Sard formula results from integrating the natural [[Spline|spline]] function of order $2 r - 1$ which interpolates $f$ at the nodes $x _ { 1 } , \ldots , x _ { n }$ [[#References|[a1]]]. |
====References==== | ====References==== | ||
− | <table>< | + | <table><tr><td valign="top">[a1]</td> <td valign="top"> H. Braß, "Quadraturverfahren" , Vandenhoeck&Ruprecht (1977)</td></tr><tr><td valign="top">[a2]</td> <td valign="top"> P.J. Davis, P. Rabinowitz, "Methods of numerical integration" , Acad. Press (1984) (Edition: Second)</td></tr><tr><td valign="top">[a3]</td> <td valign="top"> H. Engels, "Numerical quadrature and cubature" , Acad. Press (1980)</td></tr><tr><td valign="top">[a4]</td> <td valign="top"> H.S. Wilf, "Exactness conditions in numerical quadrature" ''Numer. Math.'' , '''6''' (1964) pp. 315–319</td></tr></table> |
Latest revision as of 20:04, 23 January 2021
2020 Mathematics Subject Classification: Primary: 65D32 [MSN][ZBL]
Wilf formulas
Quadrature formulas (cf. Quadrature formula) constructed from a Hilbert space setting.
Let $\mathcal{H}$ be a Hilbert space of continuous functions such that $I [ f ] = \int _ { a } ^ { b } f ( x ) d x$ and $L _ { \nu } [ f ] = f ( x _ { \nu } )$ are continuous functionals; let $R = I - \sum _ { \nu = 1 } ^ { n } \alpha _ { \nu } L _ { \nu }$ for $( \alpha _ { 1 } , \dots , \alpha _ { n } ) \in \mathbf{C} ^ { n }$. Riesz's representation theorem guarantees the existence of an $r \in \mathcal{H}$ such that $R [ f ] = ( r , f )$. By the Schwarz inequality (cf. Bunyakovskii inequality) one has $|R[f]| \le \Vert R \Vert\cdot\Vert f \Vert$ in the Hilbert space norm. The formula is called optimal in $\mathcal{H}$ if $x _ { 1 } , \ldots , x _ { n }$ and $\alpha_{1} , \ldots , \alpha _ { n }$ are chosen such as to minimize $\| r\|$. If $\mathcal{H}$ has a continuously differentiable reproducing kernel $K$, then such optimal formulas necessarily satisfy [a1]
\begin{equation*} R [ K ( x _ { \nu } , . ) ] = 0 , \quad \nu = 1 , \dots , n, \end{equation*}
and
\begin{equation*} R [ K _ { x } ( x _ { \nu } , . ) ] = 0 , \quad \nu = 2 , \dots , n - 1, \end{equation*}
and $\nu = 1$ ($\nu = n$) if $x _ { 1 } \neq a$ ($x _ { n } \neq b$). Here, $K _ { x }$ denotes the derivative with respect to the first variable. Formulas which satisfy these conditions are called Wilf formulas.
The problem of minimizing $\| r\|$ can also be considered for fixed nodes $x _ { 1 } , \ldots , x _ { n }$. These formulas are characterized by integrating the unique element of least norm in $\mathcal{H}$ which interpolates $f$ at the nodes $x _ { \nu }$. An analogous statement holds for Hermite quadrature formulas of the type $\sum _ { \nu = 1 } ^ { n } \alpha _ { \nu } f ( x _ { \nu } ) + \sum _ { \nu = 1 } ^ { n } \beta _ { \nu } f ^ { \prime } ( x _ { \nu } )$. The Wilf formula for free nodes is the Wilf formula for those fixed nodes for which $b _ { \nu } = 0$ [a1], [a3].
The original construction of H.S. Wilf [a4] was for the Hardy space (cf. also Hardy spaces) of functions which are analytic inside the open disc with radius $\rho$, with inner product
\begin{equation*} ( f , g ) = \operatorname { lim } _ { \eta \rightarrow \rho - 0 } \int _ { | z | = \eta } f ( z ) \overline { g ( z ) } d s. \end{equation*}
In the Hardy space the necessary conditions have a unique solution. The nodes are in $[ - 1,1 ]$, the weights are positive and $\sum _ { \nu = 1 } ^ { n } \alpha _ { \nu } \leq 2$. For fixed $n$ and $\rho \rightarrow \infty$ these formulas converge to the Gaussian formulas (cf. also Gauss quadrature formula) [a1]. They can be constructed from a suitable rational interpolant [a1], [a3].
For fixed nodes $x _ { 1 } , \ldots , x _ { n }$, the inner product
\begin{equation*} ( f , g ) = \sum _ { \nu = 1 } ^ { r } f ( x _ { \nu } ) g ( x _ { \nu } ) + \int _ { a } ^ { b } f ^ { ( r ) } ( x ) g ^ { ( r ) } ( x ) d x \end{equation*}
leads to the Sard quadrature formula, which is optimal in the class of functions $f$ with $\int _ { a } ^ { b } ( f ^ { ( r ) } ( x ) ) ^ { 2 } d x \leq 1$ [a1], [a2], [a3] (see Optimal quadrature; Best quadrature formula). The Sard formula results from integrating the natural spline function of order $2 r - 1$ which interpolates $f$ at the nodes $x _ { 1 } , \ldots , x _ { n }$ [a1].
References
[a1] | H. Braß, "Quadraturverfahren" , Vandenhoeck&Ruprecht (1977) |
[a2] | P.J. Davis, P. Rabinowitz, "Methods of numerical integration" , Acad. Press (1984) (Edition: Second) |
[a3] | H. Engels, "Numerical quadrature and cubature" , Acad. Press (1980) |
[a4] | H.S. Wilf, "Exactness conditions in numerical quadrature" Numer. Math. , 6 (1964) pp. 315–319 |
Wilf quadrature formulas. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Wilf_quadrature_formulas&oldid=12604