Difference between revisions of "Quasi-regular radical"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | q0766701.png | ||
+ | $#A+1 = 36 n = 0 | ||
+ | $#C+1 = 36 : ~/encyclopedia/old_files/data/Q076/Q.0706670 Quasi\AAhregular radical | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''of a ring'' | ''of a ring'' | ||
− | The largest quasi-regular ideal of the given ring. An ideal | + | The largest quasi-regular ideal of the given ring. An ideal $ A $ |
+ | of a ring $ R $ | ||
+ | is called quasi-regular if $ A $ | ||
+ | is a [[Quasi-regular ring|quasi-regular ring]]. There exists in every alternative (in particular, associative) ring a quasi-regular radical; it coincides with the sum of all right (left) quasi-regular ideals (see [[#References|[1]]], [[#References|[10]]]). The quasi-regular radical of an associative ring is also called the [[Jacobson radical|Jacobson radical]]. | ||
− | The quasi-regular radical | + | The quasi-regular radical $ J ( R) $ |
+ | of an arbitrary alternative ring $ R $ | ||
+ | is equal to the intersection of all maximal modular right (left) ideals of $ R $; | ||
+ | $ J ( R) $ | ||
+ | is also equal to the intersection of the kernels of all irreducible right (left) representations of $ R $( | ||
+ | see [[#References|[1]]], [[#References|[5]]]–[[#References|[8]]]). A ring $ R $ | ||
+ | is called $ J $- | ||
+ | semi-simple if $ J ( R) = 0 $. | ||
+ | The quotient ring $ R / J ( R) $ | ||
+ | is always semi-simple. Every [[Semi-simple ring|semi-simple ring]] is isomorphic to a subdirect sum of primitive rings [[#References|[1]]], [[#References|[8]]]. If $ R $ | ||
+ | satisfies the minimum condition for right (left) ideals, then the radical $ J ( R) $ | ||
+ | is nilpotent and the quotient ring $ R / J ( R) $ | ||
+ | is isomorphic to a finite direct sum of complete matrix rings over skew-fields and Cayley–Dickson algebras (the latter terms are absent in the associative case), see [[#References|[1]]]–[[#References|[3]]]. Let $ A $ | ||
+ | be a two-sided ideal of the ring $ R $; | ||
+ | then | ||
− | + | $$ | |
+ | J ( A) = A \cap J ( R) | ||
+ | $$ | ||
− | (see [[#References|[1]]], [[#References|[4]]]); if | + | (see [[#References|[1]]], [[#References|[4]]]); if $ R $ |
+ | is an associative ring and $ R _ {n} $ | ||
+ | is the ring of matrices of order $ n $ | ||
+ | over $ R $, | ||
+ | then | ||
− | + | $$ | |
+ | J ( R _ {n} ) = [ J ( R) ] _ {n} . | ||
+ | $$ | ||
− | If | + | If $ R $ |
+ | is an associative algebra over a field $ F $ | ||
+ | and the cardinality of $ F $ | ||
+ | is greater than the dimension of $ R $ | ||
+ | over $ F $ | ||
+ | or if $ R $ | ||
+ | is algebraic over $ F $, | ||
+ | then $ J ( R) $ | ||
+ | is a nil ideal. A quasi-regular radical of a finitely-generated alternative ring satisfying an essential identity relation is the same as a lower nil radical (see [[Radical of rings and algebras|Radical of rings and algebras]]) [[#References|[6]]]. Certain analogues of quasi-regular radicals exist in Jordan algebras (cf. [[Jordan algebra|Jordan algebra]]). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Jacobson, "Structure of rings" , Amer. Math. Soc. (1956)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> K.A. Zhevlakov, "On radical ideals of an alternative ring" ''Algebra i Logika'' , '''4''' : 4 (1965) pp. 87–102 (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> K.A. Zhevlakov, "Alternative Artinian rings" ''Algebra i Logika'' , '''5''' : 3 (1966) pp. 11–36 (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> K.A. Zhevlakov, "On the Kleinfeld and Smiley radicals of alternative rings" ''Algebra and Logic'' , '''8''' : 2 (1969) pp. 100–102 ''Algebra i Logika'' , '''8''' : 2 (1969) pp. 176–180</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> K.A. Zhevlakov, "Coincidence of Kleinfeld and Smiley radicals in alternative rings" ''Algebra and Logic'' , '''8''' : 3 (1969) pp. 175–181 ''Algebra i Logika'' , '''8''' : 3 (1969) pp. 309–319</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> K.A. Zhevlakov, "Quasiregular ideals in finitely generated alternative rings" ''Algebra and Logic'' , '''11''' : 2 (1972) pp. 94–100 ''Algebra i Logika'' , '''11''' : 2 (1972) pp. 140–1161</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> A.M. Slin'ko, I.P. Shestakov, "Right representation of algebras" ''Algebra and Logic'' , '''13''' : 5 (1973) pp. 312–333 ''Algebra i Logika'' , '''13''' : 5 (1974) pp. 544–588</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> E. Kleinfeld, "Primitive alternative rings and semi-simplicity" ''Amer. J. Math.'' , '''77''' (1955) pp. 725–730</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> K. McCrimmon, "The radical of a Jordan algebra" ''Proc. Nat. Acad. Sci. USA'' , '''62''' (1969) pp. 671–678</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top"> M.F. Smiley, "The radical of an alternative ring" ''Ann. of Math.'' , '''49''' : 3 (1948) pp. 702–709</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Jacobson, "Structure of rings" , Amer. Math. Soc. (1956)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> K.A. Zhevlakov, "On radical ideals of an alternative ring" ''Algebra i Logika'' , '''4''' : 4 (1965) pp. 87–102 (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> K.A. Zhevlakov, "Alternative Artinian rings" ''Algebra i Logika'' , '''5''' : 3 (1966) pp. 11–36 (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> K.A. Zhevlakov, "On the Kleinfeld and Smiley radicals of alternative rings" ''Algebra and Logic'' , '''8''' : 2 (1969) pp. 100–102 ''Algebra i Logika'' , '''8''' : 2 (1969) pp. 176–180</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> K.A. Zhevlakov, "Coincidence of Kleinfeld and Smiley radicals in alternative rings" ''Algebra and Logic'' , '''8''' : 3 (1969) pp. 175–181 ''Algebra i Logika'' , '''8''' : 3 (1969) pp. 309–319</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> K.A. Zhevlakov, "Quasiregular ideals in finitely generated alternative rings" ''Algebra and Logic'' , '''11''' : 2 (1972) pp. 94–100 ''Algebra i Logika'' , '''11''' : 2 (1972) pp. 140–1161</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> A.M. Slin'ko, I.P. Shestakov, "Right representation of algebras" ''Algebra and Logic'' , '''13''' : 5 (1973) pp. 312–333 ''Algebra i Logika'' , '''13''' : 5 (1974) pp. 544–588</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> E. Kleinfeld, "Primitive alternative rings and semi-simplicity" ''Amer. J. Math.'' , '''77''' (1955) pp. 725–730</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> K. McCrimmon, "The radical of a Jordan algebra" ''Proc. Nat. Acad. Sci. USA'' , '''62''' (1969) pp. 671–678</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top"> M.F. Smiley, "The radical of an alternative ring" ''Ann. of Math.'' , '''49''' : 3 (1948) pp. 702–709</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | The radical of a row-finite infinite matrix ring is determined by annihilating sequences of ideals [[#References|[a1]]]. The radical of a polynomial ring | + | The radical of a row-finite infinite matrix ring is determined by annihilating sequences of ideals [[#References|[a1]]]. The radical of a polynomial ring $ R [ x] $ |
+ | is $ N [ x] $ | ||
+ | for some nil ideal $ N $ | ||
+ | in $ R $( | ||
+ | the determination of $ N $ | ||
+ | is an open problem). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> N.E. Sexauer, J.E. Warnock, "The radical of the row-finite matrices over an arbitrary ring" ''Trans. Amer. Math. Soc.'' , '''39''' (1969) pp. 281–295</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> L.H. Rowen, "Ring theory" , '''I, II''' , Acad. Press (1988)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> N.E. Sexauer, J.E. Warnock, "The radical of the row-finite matrices over an arbitrary ring" ''Trans. Amer. Math. Soc.'' , '''39''' (1969) pp. 281–295</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> L.H. Rowen, "Ring theory" , '''I, II''' , Acad. Press (1988)</TD></TR></table> |
Latest revision as of 08:09, 6 June 2020
of a ring
The largest quasi-regular ideal of the given ring. An ideal $ A $ of a ring $ R $ is called quasi-regular if $ A $ is a quasi-regular ring. There exists in every alternative (in particular, associative) ring a quasi-regular radical; it coincides with the sum of all right (left) quasi-regular ideals (see [1], [10]). The quasi-regular radical of an associative ring is also called the Jacobson radical.
The quasi-regular radical $ J ( R) $ of an arbitrary alternative ring $ R $ is equal to the intersection of all maximal modular right (left) ideals of $ R $; $ J ( R) $ is also equal to the intersection of the kernels of all irreducible right (left) representations of $ R $( see [1], [5]–[8]). A ring $ R $ is called $ J $- semi-simple if $ J ( R) = 0 $. The quotient ring $ R / J ( R) $ is always semi-simple. Every semi-simple ring is isomorphic to a subdirect sum of primitive rings [1], [8]. If $ R $ satisfies the minimum condition for right (left) ideals, then the radical $ J ( R) $ is nilpotent and the quotient ring $ R / J ( R) $ is isomorphic to a finite direct sum of complete matrix rings over skew-fields and Cayley–Dickson algebras (the latter terms are absent in the associative case), see [1]–[3]. Let $ A $ be a two-sided ideal of the ring $ R $; then
$$ J ( A) = A \cap J ( R) $$
(see [1], [4]); if $ R $ is an associative ring and $ R _ {n} $ is the ring of matrices of order $ n $ over $ R $, then
$$ J ( R _ {n} ) = [ J ( R) ] _ {n} . $$
If $ R $ is an associative algebra over a field $ F $ and the cardinality of $ F $ is greater than the dimension of $ R $ over $ F $ or if $ R $ is algebraic over $ F $, then $ J ( R) $ is a nil ideal. A quasi-regular radical of a finitely-generated alternative ring satisfying an essential identity relation is the same as a lower nil radical (see Radical of rings and algebras) [6]. Certain analogues of quasi-regular radicals exist in Jordan algebras (cf. Jordan algebra).
References
[1] | N. Jacobson, "Structure of rings" , Amer. Math. Soc. (1956) |
[2] | K.A. Zhevlakov, "On radical ideals of an alternative ring" Algebra i Logika , 4 : 4 (1965) pp. 87–102 (In Russian) |
[3] | K.A. Zhevlakov, "Alternative Artinian rings" Algebra i Logika , 5 : 3 (1966) pp. 11–36 (In Russian) |
[4] | K.A. Zhevlakov, "On the Kleinfeld and Smiley radicals of alternative rings" Algebra and Logic , 8 : 2 (1969) pp. 100–102 Algebra i Logika , 8 : 2 (1969) pp. 176–180 |
[5] | K.A. Zhevlakov, "Coincidence of Kleinfeld and Smiley radicals in alternative rings" Algebra and Logic , 8 : 3 (1969) pp. 175–181 Algebra i Logika , 8 : 3 (1969) pp. 309–319 |
[6] | K.A. Zhevlakov, "Quasiregular ideals in finitely generated alternative rings" Algebra and Logic , 11 : 2 (1972) pp. 94–100 Algebra i Logika , 11 : 2 (1972) pp. 140–1161 |
[7] | A.M. Slin'ko, I.P. Shestakov, "Right representation of algebras" Algebra and Logic , 13 : 5 (1973) pp. 312–333 Algebra i Logika , 13 : 5 (1974) pp. 544–588 |
[8] | E. Kleinfeld, "Primitive alternative rings and semi-simplicity" Amer. J. Math. , 77 (1955) pp. 725–730 |
[9] | K. McCrimmon, "The radical of a Jordan algebra" Proc. Nat. Acad. Sci. USA , 62 (1969) pp. 671–678 |
[10] | M.F. Smiley, "The radical of an alternative ring" Ann. of Math. , 49 : 3 (1948) pp. 702–709 |
Comments
The radical of a row-finite infinite matrix ring is determined by annihilating sequences of ideals [a1]. The radical of a polynomial ring $ R [ x] $ is $ N [ x] $ for some nil ideal $ N $ in $ R $( the determination of $ N $ is an open problem).
References
[a1] | N.E. Sexauer, J.E. Warnock, "The radical of the row-finite matrices over an arbitrary ring" Trans. Amer. Math. Soc. , 39 (1969) pp. 281–295 |
[a2] | L.H. Rowen, "Ring theory" , I, II , Acad. Press (1988) |
Quasi-regular radical. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Quasi-regular_radical&oldid=12544