|
|
Line 1: |
Line 1: |
− | An algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040140/f0401401.png" /> in which there are distinguished subspaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040140/f0401402.png" />, indexed by the elements of a totally ordered group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040140/f0401403.png" /> (most often <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040140/f0401404.png" /> is the additive group of integers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040140/f0401405.png" />), such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040140/f0401406.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040140/f0401407.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040140/f0401408.png" /> (an increasing filtration). Sometimes one considers the case where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040140/f0401409.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040140/f04014010.png" /> (a decreasing filtration), but it reduces to the preceding case by reversing the order in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040140/f04014011.png" />. With each filtered algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040140/f04014012.png" /> one associates the [[Graded algebra|graded algebra]]
| + | <!-- |
| + | f0401401.png |
| + | $#A+1 = 37 n = 0 |
| + | $#C+1 = 37 : ~/encyclopedia/old_files/data/F040/F.0400140 Filtered algebra |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040140/f04014013.png" /></td> </tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040140/f04014014.png" /> (if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040140/f04014015.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040140/f04014016.png" />), and the product of the elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040140/f04014017.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040140/f04014018.png" /> is defined by the formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040140/f04014019.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040140/f04014020.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040140/f04014021.png" /> are representatives of the cosets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040140/f04014022.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040140/f04014023.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040140/f04014024.png" /> is the coset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040140/f04014025.png" /> generated by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040140/f04014026.png" />. If some multilinear identity is satisfied in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040140/f04014027.png" /> (for example, commutativity, associativity, or the Jacobi identity), then it is also satisfied in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040140/f04014028.png" />. | + | An algebra $ S $ |
| + | in which there are distinguished subspaces $ S _ \alpha $, |
| + | indexed by the elements of a totally ordered group $ A $( |
| + | most often $ A $ |
| + | is the additive group of integers $ \mathbf Z $), |
| + | such that $ S _ \alpha \subseteq S _ \beta $ |
| + | for $ \alpha < \beta $ |
| + | and $ S _ \alpha S _ \beta \subseteq S _ {\alpha + \beta } $( |
| + | an increasing filtration). Sometimes one considers the case where $ S _ \alpha \supseteq S _ \beta $ |
| + | for $ \alpha < \beta $( |
| + | a decreasing filtration), but it reduces to the preceding case by reversing the order in $ A $. |
| + | With each filtered algebra $ S $ |
| + | one associates the [[Graded algebra|graded algebra]] |
| + | |
| + | $$ |
| + | \mathop{\rm gr} S = \ |
| + | \oplus _ \alpha \overline{S}\; _ \alpha , |
| + | $$ |
| + | |
| + | where $ \overline{S}\; _ \alpha = S _ \alpha / \sum _ {\beta < \alpha } S _ \beta $( |
| + | if $ A = \mathbf Z $, |
| + | then $ \overline{S}\; _ \alpha = S _ \alpha /S _ {\alpha - 1 } $), |
| + | and the product of the elements $ \overline{x}\; \in \overline{S}\; _ \alpha $ |
| + | and $ \overline{y}\; \in \overline{S}\; _ \beta $ |
| + | is defined by the formula $ \overline{x}\; \overline{y}\; = \overline{xy}\; $, |
| + | where $ x $ |
| + | and $ y $ |
| + | are representatives of the cosets $ \overline{x}\; $ |
| + | and $ \overline{y}\; $, |
| + | and $ \overline{xy}\; $ |
| + | is the coset of $ \sum _ {\gamma < \alpha + \beta } S _ \gamma $ |
| + | generated by $ xy \in S _ {\alpha + \beta } $. |
| + | If some multilinear identity is satisfied in $ S $( |
| + | for example, commutativity, associativity, or the Jacobi identity), then it is also satisfied in $ \mathop{\rm gr} S $. |
| | | |
| ===Examples.=== | | ===Examples.=== |
| | | |
| + | 1) Let $ S $ |
| + | be a [[Clifford algebra|Clifford algebra]] and let $ S _ {n} $, |
| + | $ n \in \mathbf Z $, |
| + | be the collection of elements that can be represented in the form of (non-commutative) polynomials of degree $ \leq n $ |
| + | in the generators. One obtains an increasing $ \mathbf Z $- |
| + | filtration of $ S $ |
| + | in which $ S _ {n} = 0 $ |
| + | for $ n < 0 $. |
| + | The associated graded algebra is the [[Exterior algebra|exterior algebra]] with the same number of generators. |
| | | |
− | 1) Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040140/f04014029.png" /> be a [[Clifford algebra|Clifford algebra]] and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040140/f04014030.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040140/f04014031.png" />, be the collection of elements that can be represented in the form of (non-commutative) polynomials of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040140/f04014032.png" /> in the generators. One obtains an increasing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040140/f04014033.png" />-filtration of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040140/f04014034.png" /> in which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040140/f04014035.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040140/f04014036.png" />. The associated graded algebra is the [[Exterior algebra|exterior algebra]] with the same number of generators.
| + | 2) In the [[Universal enveloping algebra|universal enveloping algebra]] of a Lie algebra one can define an increasing $ \mathbf Z $- |
− | | + | filtration in the same way as in the preceding example. By the [[Birkhoff–Witt theorem|Birkhoff–Witt theorem]], the associated graded algebra is the polynomial algebra. |
− | 2) In the [[Universal enveloping algebra|universal enveloping algebra]] of a Lie algebra one can define an increasing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040140/f04014037.png" />-filtration in the same way as in the preceding example. By the [[Birkhoff–Witt theorem|Birkhoff–Witt theorem]], the associated graded algebra is the polynomial algebra. | |
Latest revision as of 19:39, 5 June 2020
An algebra $ S $
in which there are distinguished subspaces $ S _ \alpha $,
indexed by the elements of a totally ordered group $ A $(
most often $ A $
is the additive group of integers $ \mathbf Z $),
such that $ S _ \alpha \subseteq S _ \beta $
for $ \alpha < \beta $
and $ S _ \alpha S _ \beta \subseteq S _ {\alpha + \beta } $(
an increasing filtration). Sometimes one considers the case where $ S _ \alpha \supseteq S _ \beta $
for $ \alpha < \beta $(
a decreasing filtration), but it reduces to the preceding case by reversing the order in $ A $.
With each filtered algebra $ S $
one associates the graded algebra
$$
\mathop{\rm gr} S = \
\oplus _ \alpha \overline{S}\; _ \alpha ,
$$
where $ \overline{S}\; _ \alpha = S _ \alpha / \sum _ {\beta < \alpha } S _ \beta $(
if $ A = \mathbf Z $,
then $ \overline{S}\; _ \alpha = S _ \alpha /S _ {\alpha - 1 } $),
and the product of the elements $ \overline{x}\; \in \overline{S}\; _ \alpha $
and $ \overline{y}\; \in \overline{S}\; _ \beta $
is defined by the formula $ \overline{x}\; \overline{y}\; = \overline{xy}\; $,
where $ x $
and $ y $
are representatives of the cosets $ \overline{x}\; $
and $ \overline{y}\; $,
and $ \overline{xy}\; $
is the coset of $ \sum _ {\gamma < \alpha + \beta } S _ \gamma $
generated by $ xy \in S _ {\alpha + \beta } $.
If some multilinear identity is satisfied in $ S $(
for example, commutativity, associativity, or the Jacobi identity), then it is also satisfied in $ \mathop{\rm gr} S $.
Examples.
1) Let $ S $
be a Clifford algebra and let $ S _ {n} $,
$ n \in \mathbf Z $,
be the collection of elements that can be represented in the form of (non-commutative) polynomials of degree $ \leq n $
in the generators. One obtains an increasing $ \mathbf Z $-
filtration of $ S $
in which $ S _ {n} = 0 $
for $ n < 0 $.
The associated graded algebra is the exterior algebra with the same number of generators.
2) In the universal enveloping algebra of a Lie algebra one can define an increasing $ \mathbf Z $-
filtration in the same way as in the preceding example. By the Birkhoff–Witt theorem, the associated graded algebra is the polynomial algebra.
How to Cite This Entry:
Filtered algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Filtered_algebra&oldid=12513
This article was adapted from an original article by E.B. Vinberg (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098.
See original article