Namespaces
Variants
Actions

Difference between revisions of "Exact functor"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A functor that commutes with finite limits and colimits. More precisely, an additive functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036740/e0367401.png" /> between Abelian categories <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036740/e0367402.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036740/e0367403.png" /> is called exact if it maps a short exact sequence
+
<!--
 +
e0367401.png
 +
$#A+1 = 17 n = 0
 +
$#C+1 = 17 : ~/encyclopedia/old_files/data/E036/E.0306740 Exact functor
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036740/e0367404.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036740/e0367405.png" /> into a short exact sequence
+
A functor that commutes with finite limits and colimits. More precisely, an additive functor  $  F : \mathfrak A \rightarrow \mathfrak B $
 +
between Abelian categories  $  \mathfrak A $
 +
and  $  \mathfrak B $
 +
is called exact if it maps a short exact sequence
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036740/e0367406.png" /></td> </tr></table>
+
$$
 +
0 \rightarrow  A  \rightarrow  B  \rightarrow  C  \rightarrow  0
 +
$$
  
in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036740/e0367407.png" />.
+
in $  \mathfrak A $
 +
into a short exact sequence
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036740/e0367408.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036740/e0367409.png" /> are non-Abelian categories, then a functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036740/e03674010.png" /> is sometimes called exact if it maps a commutative diagram
+
$$
 +
0 \rightarrow  F ( A)  \rightarrow  F ( B)  \rightarrow  F ( C)  \rightarrow  0
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036740/e03674011.png" /></td> </tr></table>
+
in  $  \mathfrak B $.
  
in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036740/e03674012.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036740/e03674013.png" /> is the kernel pair of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036740/e03674014.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036740/e03674015.png" /> is the cokernel of the pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036740/e03674016.png" />, into a diagram in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036740/e03674017.png" /> with the same properties.
+
If  $  \mathfrak A $
 +
and  $  \mathfrak B $
 +
are non-Abelian categories, then a functor  $  F : \mathfrak A \rightarrow \mathfrak B $
 +
is sometimes called exact if it maps a commutative diagram
  
 +
$$
 +
A  \begin{array}{c}
 +
\rightarrow ^ { {\epsilon _ 1} } \\
 +
  \mathop \rightarrow \limits _ { {\epsilon _ {2} }} 
 +
\end{array}
 +
  B  \mathop \rightarrow \limits ^  \nu    C
 +
$$
  
 +
in  $  \mathfrak A $,
 +
where  $  ( \epsilon _ {1} , \epsilon _ {2} ) $
 +
is the kernel pair of  $  \nu $,
 +
and  $  \nu $
 +
is the cokernel of the pair  $  ( \epsilon _ {1} , \epsilon _ {2} ) $,
 +
into a diagram in  $  \mathfrak B $
 +
with the same properties.
  
 
====Comments====
 
====Comments====

Latest revision as of 19:38, 5 June 2020


A functor that commutes with finite limits and colimits. More precisely, an additive functor $ F : \mathfrak A \rightarrow \mathfrak B $ between Abelian categories $ \mathfrak A $ and $ \mathfrak B $ is called exact if it maps a short exact sequence

$$ 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0 $$

in $ \mathfrak A $ into a short exact sequence

$$ 0 \rightarrow F ( A) \rightarrow F ( B) \rightarrow F ( C) \rightarrow 0 $$

in $ \mathfrak B $.

If $ \mathfrak A $ and $ \mathfrak B $ are non-Abelian categories, then a functor $ F : \mathfrak A \rightarrow \mathfrak B $ is sometimes called exact if it maps a commutative diagram

$$ A \begin{array}{c} \rightarrow ^ { {\epsilon _ 1} } \\ \mathop \rightarrow \limits _ { {\epsilon _ {2} }} \end{array} B \mathop \rightarrow \limits ^ \nu C $$

in $ \mathfrak A $, where $ ( \epsilon _ {1} , \epsilon _ {2} ) $ is the kernel pair of $ \nu $, and $ \nu $ is the cokernel of the pair $ ( \epsilon _ {1} , \epsilon _ {2} ) $, into a diagram in $ \mathfrak B $ with the same properties.

Comments

In the general theory of categories, a functor is commonly called left exact if it preserves (i.e. commutes with) all finite limits, right exact if it preserves all finite colimits, and exact if it is both left and right exact. An additive functor between Abelian categories automatically preserves finite products and coproducts; so the question of exactness for such a functor reduces to that of the preservation of kernels and cokernels, or equivalently of exact sequences — whence the name. For functors between non-Abelian categories, there are several conflicting uses of the term "exact" , including the one given in the final sentence of the main article above; but the one given in the first sentence of this addendum is the most widely understood.

In Russian literature there is some confusion between the terms "exact functor" and "faithful functor" , cf. also Faithful functor and the references given there.

How to Cite This Entry:
Exact functor. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Exact_functor&oldid=12414
This article was adapted from an original article by M.Sh. Tsalenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article