|
|
Line 1: |
Line 1: |
− | A set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027620/c0276201.png" /> in a vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027620/c0276202.png" /> over the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027620/c0276203.png" /> of real numbers given by an equation
| + | <!-- |
| + | c0276201.png |
| + | $#A+1 = 36 n = 0 |
| + | $#C+1 = 36 : ~/encyclopedia/old_files/data/C027/C.0207620 Cylinder set |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027620/c0276204.png" /></td> </tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027620/c0276205.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027620/c0276206.png" /> are linear functions defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027620/c0276207.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027620/c0276208.png" /> is a Borel set in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027620/c0276209.png" />-dimensional space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027620/c02762010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027620/c02762011.png" />.
| + | A set $ S $ |
| + | in a vector space $ L $ |
| + | over the field $ \mathbf R $ |
| + | of real numbers given by an equation |
| | | |
− | The collection of all cylinder sets in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027620/c02762012.png" /> forms an algebra of sets, the so-called cylinder algebra. The smallest <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027620/c02762013.png" />-algebra of subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027620/c02762014.png" /> containing the cylinder sets is called the cylinder <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027620/c02762016.png" />-algebra.
| + | $$ |
| + | S \equiv \ |
| + | S _ {\{ A; F _ {1} \dots F _ {n} \} } = \ |
| + | \{ {x \in L } : {( F _ {1} ( x) \dots F _ {n} ( x)) \in A } \} |
| + | , |
| + | $$ |
| | | |
− | When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027620/c02762017.png" /> is a topological vector space, one considers only cylinder sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027620/c02762018.png" /> that are defined by collections <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027620/c02762019.png" /> of continuous linear functions. Here by the cylinder algebra and the cylinder <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027620/c02762020.png" />-algebra one understands the corresponding collection of subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027620/c02762021.png" /> that are generated by precisely such cylinder sets. In the important special case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027620/c02762022.png" /> is the topological dual of some topological vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027620/c02762023.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027620/c02762024.png" />, cylinder sets in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027620/c02762025.png" /> are defined by means of *-weakly continuous linear functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027620/c02762026.png" />, that is, functions of the form
| + | where $ F \in L ^ {*} $, |
| + | $ i = 1, 2 \dots $ |
| + | are linear functions defined on $ L $ |
| + | and $ A \subset \mathbf R ^ {n} $ |
| + | is a Borel set in the $ n $- |
| + | dimensional space $ \mathbf R ^ {n} $, |
| + | $ n = 1, 2 , . . . $. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027620/c02762027.png" /></td> </tr></table>
| + | The collection of all cylinder sets in $ L $ |
| + | forms an algebra of sets, the so-called cylinder algebra. The smallest $ \sigma $- |
| + | algebra of subsets of $ L $ |
| + | containing the cylinder sets is called the cylinder $ \sigma $- |
| + | algebra. |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027620/c02762028.png" /> is an arbitrary element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027620/c02762029.png" />.
| + | When $ L $ |
| + | is a topological vector space, one considers only cylinder sets $ S _ {\{ A; F _ {1} \dots F _ {n} \} } $ |
| + | that are defined by collections $ \{ F _ {1} \dots F _ {n} \} $ |
| + | of continuous linear functions. Here by the cylinder algebra and the cylinder $ \sigma $- |
| + | algebra one understands the corresponding collection of subsets of $ L $ |
| + | that are generated by precisely such cylinder sets. In the important special case when $ L $ |
| + | is the topological dual of some topological vector space $ M $, |
| + | $ L = M ^ { \prime } $, |
| + | cylinder sets in $ L $ |
| + | are defined by means of *-weakly continuous linear functions on $ L $, |
| + | that is, functions of the form |
| | | |
| + | $$ |
| + | F _ \phi ( x) = x ( \phi ),\ \ |
| + | x \in L, |
| + | $$ |
| | | |
| + | where $ \phi $ |
| + | is an arbitrary element of $ M $. |
| | | |
| ====Comments==== | | ====Comments==== |
− | In a somewhat more general context, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027620/c02762030.png" /> be a product of (topological) spaces. An <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027620/c02762032.png" />-cylinder set, or simply a cylinder set, in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027620/c02762033.png" /> is a set of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027620/c02762034.png" /> where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027620/c02762035.png" /> is a finite subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027620/c02762036.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027620/c02762037.png" /> is a subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027620/c02762038.png" />. | + | In a somewhat more general context, let $ X = \prod _ {\alpha \in A } X _ \alpha $ |
| + | be a product of (topological) spaces. An $ n $- |
| + | cylinder set, or simply a cylinder set, in $ X $ |
| + | is a set of the form $ U \times \prod _ {\alpha \notin S } X _ \alpha $ |
| + | where $ S $ |
| + | is a finite subset of $ A $ |
| + | and $ U $ |
| + | is a subset of $ \prod _ {\alpha \in S } X _ \alpha $. |
A set $ S $
in a vector space $ L $
over the field $ \mathbf R $
of real numbers given by an equation
$$
S \equiv \
S _ {\{ A; F _ {1} \dots F _ {n} \} } = \
\{ {x \in L } : {( F _ {1} ( x) \dots F _ {n} ( x)) \in A } \}
,
$$
where $ F \in L ^ {*} $,
$ i = 1, 2 \dots $
are linear functions defined on $ L $
and $ A \subset \mathbf R ^ {n} $
is a Borel set in the $ n $-
dimensional space $ \mathbf R ^ {n} $,
$ n = 1, 2 , . . . $.
The collection of all cylinder sets in $ L $
forms an algebra of sets, the so-called cylinder algebra. The smallest $ \sigma $-
algebra of subsets of $ L $
containing the cylinder sets is called the cylinder $ \sigma $-
algebra.
When $ L $
is a topological vector space, one considers only cylinder sets $ S _ {\{ A; F _ {1} \dots F _ {n} \} } $
that are defined by collections $ \{ F _ {1} \dots F _ {n} \} $
of continuous linear functions. Here by the cylinder algebra and the cylinder $ \sigma $-
algebra one understands the corresponding collection of subsets of $ L $
that are generated by precisely such cylinder sets. In the important special case when $ L $
is the topological dual of some topological vector space $ M $,
$ L = M ^ { \prime } $,
cylinder sets in $ L $
are defined by means of *-weakly continuous linear functions on $ L $,
that is, functions of the form
$$
F _ \phi ( x) = x ( \phi ),\ \
x \in L,
$$
where $ \phi $
is an arbitrary element of $ M $.
In a somewhat more general context, let $ X = \prod _ {\alpha \in A } X _ \alpha $
be a product of (topological) spaces. An $ n $-
cylinder set, or simply a cylinder set, in $ X $
is a set of the form $ U \times \prod _ {\alpha \notin S } X _ \alpha $
where $ S $
is a finite subset of $ A $
and $ U $
is a subset of $ \prod _ {\alpha \in S } X _ \alpha $.